Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology
Saved in:
MARC
| LEADER | 00000nam a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1836939728 | ||
| 003 | DE-627 | ||
| 005 | 20230217105345.0 | ||
| 007 | tu | ||
| 008 | 230217s2021 gw ||||| m 00| ||eng c | ||
| 035 | |a (DE-627)1836939728 | ||
| 035 | |a (DE-599)KXP1836939728 | ||
| 035 | |a (OCoLC)1370327436 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 044 | |c XA-DE-BW | ||
| 082 | 0 | 4 | |a 616.994 |q DE-101 |
| 082 | 0 | 4 | |a 610 |q DE-101 |
| 084 | |a 33 |2 sdnb | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Sforazzini, Francesco |d 1986- |e VerfasserIn |0 (DE-588)1277674272 |0 (DE-627)1830660071 |4 aut | |
| 245 | 1 | 0 | |a Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology |c vorgelegt von Francesco Sforazzini ; Doktorvater: Herr Prof. Dr.med. Dr.rer.nat. Jürgen Debus |
| 264 | 1 | |a Heidelberg |c November 2021 | |
| 300 | |a ix, 133 Seiten |b Illustrationen, Diagramme | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
| 338 | |a Band |b nc |2 rdacarrier | ||
| 502 | |b Dissertation |c Ruprecht-Karls-Universität Heidelberg |d 2022 | ||
| 546 | |a Zusammenfassungen in deutscher und englischer Sprache | ||
| 650 | 0 | 7 | |0 (DE-588)4193754-5 |0 (DE-627)105224782 |0 (DE-576)21008944X |a Maschinelles Lernen |2 gnd |
| 655 | 7 | |a Hochschulschrift |0 (DE-588)4113937-9 |0 (DE-627)105825778 |0 (DE-576)209480580 |2 gnd-content | |
| 700 | 1 | |a Debus, Jürgen |d 1964- |e AkademischeR BetreuerIn |0 (DE-588)1022671421 |0 (DE-627)717025780 |0 (DE-576)365774944 |4 dgs | |
| 710 | 2 | |a Universität Heidelberg |e Grad-verleihende Institution |0 (DE-588)2024349-2 |0 (DE-627)102161488 |0 (DE-576)191769517 |4 dgg | |
| 751 | |a Heidelberg |0 (DE-588)4023996-2 |0 (DE-627)106300814 |0 (DE-576)208952578 |4 uvp | ||
| 776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Sforazzini, Francesco, 1986 - |t Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology |d Heidelberg, 2022 |h 1 Online-Ressource (144 Seiten) |w (DE-627)1830659340 |
| 951 | |a BO | ||
| 992 | |a 20230220 | ||
| 993 | |a Thesis | ||
| 998 | |g 1277674272 |a Sforazzini, Francesco |m 1277674272:Sforazzini, Francesco |d 50000 |d 51001 |e 50000PS1277674272 |e 51001PS1277674272 |k 0/50000/ |k 1/50000/51001/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1836939728 |e 4274916995 | ||
| BIB | |a Y | ||
| JSO | |a {"physDesc":[{"extent":"ix, 133 Seiten","noteIll":"Illustrationen, Diagramme"}],"id":{"eki":["1836939728"]},"person":[{"display":"Sforazzini, Francesco","given":"Francesco","role":"aut","family":"Sforazzini"},{"family":"Debus","display":"Debus, Jürgen","given":"Jürgen","role":"dgs"}],"title":[{"title":"Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology","title_sort":"Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology"}],"language":["eng"],"name":{"displayForm":["vorgelegt von Francesco Sforazzini ; Doktorvater: Herr Prof. Dr.med. Dr.rer.nat. Jürgen Debus"]},"noteThesis":["Dissertation. - Ruprecht-Karls-Universität Heidelberg. - 2022"],"type":{"bibl":"thesis"},"recId":"1836939728","corporate":[{"display":"Universität Heidelberg","role":"dgg"}],"origin":[{"publisherPlace":"Heidelberg","dateIssuedKey":"2021","dateIssuedDisp":"November 2021"}]} | ||
| SRT | |a SFORAZZINIDEVELOPMEN2021 | ||