Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology

Saved in:
Bibliographic Details
Main Author: Sforazzini, Francesco (Author)
Format: Book/Monograph Thesis
Language:English
Published: Heidelberg November 2021
Subjects:
Online Access: Get full text
Author Notes:vorgelegt von Francesco Sforazzini ; Doktorvater: Herr Prof. Dr.med. Dr.rer.nat. Jürgen Debus

MARC

LEADER 00000nam a2200000 c 4500
001 1836939728
003 DE-627
005 20230217105345.0
007 tu
008 230217s2021 gw ||||| m 00| ||eng c
035 |a (DE-627)1836939728 
035 |a (DE-599)KXP1836939728 
035 |a (OCoLC)1370327436 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE-BW 
082 0 4 |a 616.994  |q DE-101 
082 0 4 |a 610  |q DE-101 
084 |a 33  |2 sdnb 
084 |a 33  |2 sdnb 
100 1 |a Sforazzini, Francesco  |d 1986-  |e VerfasserIn  |0 (DE-588)1277674272  |0 (DE-627)1830660071  |4 aut 
245 1 0 |a Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology  |c vorgelegt von Francesco Sforazzini ; Doktorvater: Herr Prof. Dr.med. Dr.rer.nat. Jürgen Debus 
264 1 |a Heidelberg  |c November 2021 
300 |a ix, 133 Seiten  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
502 |b Dissertation  |c Ruprecht-Karls-Universität Heidelberg  |d 2022 
546 |a Zusammenfassungen in deutscher und englischer Sprache 
650 0 7 |0 (DE-588)4193754-5  |0 (DE-627)105224782  |0 (DE-576)21008944X  |a Maschinelles Lernen  |2 gnd 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
700 1 |a Debus, Jürgen  |d 1964-  |e AkademischeR BetreuerIn  |0 (DE-588)1022671421  |0 (DE-627)717025780  |0 (DE-576)365774944  |4 dgs 
710 2 |a Universität Heidelberg  |e Grad-verleihende Institution  |0 (DE-588)2024349-2  |0 (DE-627)102161488  |0 (DE-576)191769517  |4 dgg 
751 |a Heidelberg  |0 (DE-588)4023996-2  |0 (DE-627)106300814  |0 (DE-576)208952578  |4 uvp 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |a Sforazzini, Francesco, 1986 -   |t Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology  |d Heidelberg, 2022  |h 1 Online-Ressource (144 Seiten)  |w (DE-627)1830659340 
951 |a BO 
992 |a 20230220 
993 |a Thesis 
998 |g 1277674272  |a Sforazzini, Francesco  |m 1277674272:Sforazzini, Francesco  |d 50000  |d 51001  |e 50000PS1277674272  |e 51001PS1277674272  |k 0/50000/  |k 1/50000/51001/  |p 1  |x j  |y j 
999 |a KXP-PPN1836939728  |e 4274916995 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"ix, 133 Seiten","noteIll":"Illustrationen, Diagramme"}],"id":{"eki":["1836939728"]},"person":[{"display":"Sforazzini, Francesco","given":"Francesco","role":"aut","family":"Sforazzini"},{"family":"Debus","display":"Debus, Jürgen","given":"Jürgen","role":"dgs"}],"title":[{"title":"Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology","title_sort":"Development of machine learning-based spatially and temporally resolved 4D radiomics in radiation oncology"}],"language":["eng"],"name":{"displayForm":["vorgelegt von Francesco Sforazzini ; Doktorvater: Herr Prof. Dr.med. Dr.rer.nat. Jürgen Debus"]},"noteThesis":["Dissertation. - Ruprecht-Karls-Universität Heidelberg. - 2022"],"type":{"bibl":"thesis"},"recId":"1836939728","corporate":[{"display":"Universität Heidelberg","role":"dgg"}],"origin":[{"publisherPlace":"Heidelberg","dateIssuedKey":"2021","dateIssuedDisp":"November 2021"}]} 
SRT |a SFORAZZINIDEVELOPMEN2021