COTS silicon diodes as radiation detectors in proton and heavy charged particle radiotherapy 1
Modern radiotherapy facilities for cancer treatment such as the Heavy Ion Therapy Center (HIT) in Heidelberg, Germany, allow for sub-millimeter precision in dose deposition. For measurement of such dose distributions and characterization of the particle beams, detectors with high spatial resolution...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
13 June 2010
|
| In: |
Radiation and environmental biophysics
Year: 2010, Volume: 49, Issue: 3, Pages: 365-371 |
| ISSN: | 1432-2099 |
| DOI: | 10.1007/s00411-010-0299-8 |
| Online Access: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00411-010-0299-8 Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007/s00411-010-0299-8 |
| Author Notes: | Franz-Joachim Kaiser, Niels Bassler, Oliver Jäkel |
| Summary: | Modern radiotherapy facilities for cancer treatment such as the Heavy Ion Therapy Center (HIT) in Heidelberg, Germany, allow for sub-millimeter precision in dose deposition. For measurement of such dose distributions and characterization of the particle beams, detectors with high spatial resolution are necessary. Here, a detector based on the commercially available COTS photodiode (BPW-34) is presented. When applied in hadronic beams of protons and carbon ions, the detector reproduces dose distribution well, but its response decreases rapidly by radiation damage. However, for MeV photon beams, the detector exhibits a similar behavior as found in diode detectors usually applied in radiotherapy. |
|---|---|
| Item Description: | Gesehen am 28.02.2023 |
| Physical Description: | Online Resource |
| ISSN: | 1432-2099 |
| DOI: | 10.1007/s00411-010-0299-8 |