Spatial effect on separatrix of two-cell system and parameter sensitivity analysis

Inflammation in biological tissues follows a dynamical process where upon injury, interactions between cell types and exchange of growth factors occur. Depending on the distribution of different cell types in space, healing or fibrosis occurs. This process is clearly spatially heterogeneous. An exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Song, Chen (VerfasserIn) , Roller, Jonas (VerfasserIn) , Ponce Bobadilla, Ana Victoria (VerfasserIn) , Palacio-Escat, Nicolàs (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn) , Heuveline, Vincent (VerfasserIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Heidelberg Univ.-Bibliothek April 22, 2021
Schriftenreihe:Preprint series of the Engineering Mathematics and Computing Lab (EMCL) Preprint no. 2020-01
In: Preprint series of the Engineering Mathematics and Computing Lab (EMCL) (Preprint no. 2021-01)

DOI:10.11588/emclpp.2021.01.81012
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/emclpp.2021.01.81012
Verlag, kostenfrei, Volltext: https://journals.ub.uni-heidelberg.de/index.php/emcl-pp/article/view/81012
Volltext
Verfasserangaben:Chen Song, Jonas Roller, Ana Victoria Ponce-Bobadilla, Nicolas Palacio-Escat, Julio Saez-Rodriguez, Vincent Heuveline
Beschreibung
Zusammenfassung:Inflammation in biological tissues follows a dynamical process where upon injury, interactions between cell types and exchange of growth factors occur. Depending on the distribution of different cell types in space, healing or fibrosis occurs. This process is clearly spatially heterogeneous. An existing modeling framework for this process assumes a spatially homogeneous distribution of fibroblasts and macrophages and is therefore unable to capture spatial effects. We extend this framework to obtain a spatially heterogeneous two-cell circuit also containing cell migration, chemotaxis and cytokine diffusion. By means of a physical property of the resulting PDE model, a decoupled multiscale solution strategy can be derived, where each linear problem is approximated by finite element methods. A numerical investigation illustrates a clear impact of spatial effects on the separatrix of the PDE model. We use non-intrusive methods from the field of uncertainty quantification to conduct a sensitivity analysis of the most uncertain model parameters, enabling us to quantify this impact.
Beschreibung:Gesehen am 09.03.2023
Beschreibung:Online Resource
DOI:10.11588/emclpp.2021.01.81012