Comparison of machine learning methods for predicting employee absences

Employee absences cannot be avoided but excessive and uncontrolled absences affect not only the companies and employees but also impact the economy, government and society. Though actual losses are hard to compute, absenteeism has been estimated to cost billions in direct and indirect costs. Address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jayme, Alejandra (VerfasserIn) , Lösel, Philipp (VerfasserIn) , Fischer, Joachim E. (VerfasserIn) , Heuveline, Vincent (VerfasserIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Heidelberg Universiätsbibliothek May 3, 2021
Schriftenreihe:Preprint series of the Engineering Mathematics and Computing Lab (EMCL) Preprint no. 2021-02
In: Preprint series of the Engineering Mathematics and Computing Lab (EMCL) (Preprint no. 2021-02)

DOI:10.11588/emclpp.2021.02.81078
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/emclpp.2021.02.81078
Verlag, kostenfrei, Volltext: https://journals.ub.uni-heidelberg.de/index.php/emcl-pp/article/view/81078
Volltext
Verfasserangaben:Alejandra Jayme, Philipp D. Lösel, Joachim Fischer, Vincent Heuveline

MARC

LEADER 00000cam a2200000 c 4500
001 1838770240
003 DE-627
005 20240327080214.0
007 cr uuu---uuuuu
008 230309s2021 xx |||||o 00| ||eng c
024 7 |a 10.11588/emclpp.2021.02.81078  |2 doi 
035 |a (DE-627)1838770240 
035 |a (DE-599)KXP1838770240 
035 |a (OCoLC)1372297497 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Jayme, Alejandra  |d 1980-  |e VerfasserIn  |0 (DE-588)1221136607  |0 (DE-627)1738286401  |4 aut 
245 1 0 |a Comparison of machine learning methods for predicting employee absences  |c Alejandra Jayme, Philipp D. Lösel, Joachim Fischer, Vincent Heuveline 
264 1 |a Heidelberg  |b Universiätsbibliothek  |c May 3, 2021 
300 |a 1 Online-Ressource (21 Seiten) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 1 |a Preprint series of the Engineering Mathematics and Computing Lab (EMCL)  |v Preprint no. 2021-02 
500 |a Gesehen am 09.03.2023 
520 |a Employee absences cannot be avoided but excessive and uncontrolled absences affect not only the companies and employees but also impact the economy, government and society. Though actual losses are hard to compute, absenteeism has been estimated to cost billions in direct and indirect costs. Addressing employee absences is difficult because the underlying reasons and causes are complex and not straightforward. Compounding this, companies do not have tools to analyze and predict the future risk of employee absences, relying instead on retrospective data that may not be relevant to the current situation at hand. In this study, we show how machine learning methods can be used to predict employee absence risks. Results show that Neural Networks give best accuracy (77%) over Random Forest (72%) and Support Vector Machines (62%). The effect of training data size and varied feature sets on the models’ performances were also tested. Also, a method allowing for ranking the sensitivity of a Neural Network to each feature is presented. 
700 1 |a Lösel, Philipp  |d 1986-  |e VerfasserIn  |0 (DE-588)1147623414  |0 (DE-627)1008687596  |0 (DE-576)495916528  |4 aut 
700 1 |a Fischer, Joachim E.  |d 1957-  |e VerfasserIn  |0 (DE-588)1029135800  |0 (DE-627)732480620  |0 (DE-576)37658775X  |4 aut 
700 1 |a Heuveline, Vincent  |d 1968-  |e VerfasserIn  |0 (DE-588)1046579266  |0 (DE-627)776691880  |0 (DE-576)399904727  |4 aut 
810 2 |a Engineering Mathematics and Computing Lab  |t Preprint series of the Engineering Mathematics and Computing Lab (EMCL)  |v Preprint no. 2021-02  |9 2021,2  |w (DE-627)776852515  |w (DE-576)399725873  |w (DE-600)2750748-8  |x 2191-0693  |7 am 
856 4 0 |u https://doi.org/10.11588/emclpp.2021.02.81078  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://journals.ub.uni-heidelberg.de/index.php/emcl-pp/article/view/81078  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20230309 
993 |a Book 
994 |a 2021 
998 |g 1046579266  |a Heuveline, Vincent  |m 1046579266:Heuveline, Vincent  |d 700000  |d 708000  |e 700000PH1046579266  |e 708000PH1046579266  |k 0/700000/  |k 1/700000/708000/  |p 4  |y j 
998 |g 1029135800  |a Fischer, Joachim E.  |m 1029135800:Fischer, Joachim E.  |d 60000  |d 65300  |e 60000PF1029135800  |e 65300PF1029135800  |k 0/60000/  |k 1/60000/65300/  |p 3 
998 |g 1147623414  |a Lösel, Philipp  |m 1147623414:Lösel, Philipp  |d 700000  |d 708000  |e 700000PL1147623414  |e 708000PL1147623414  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1221136607  |a Jayme, Alejandra  |m 1221136607:Jayme, Alejandra  |d 700000  |d 708000  |e 700000PJ1221136607  |e 708000PJ1221136607  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1838770240  |e 4285931710 
BIB |a Y 
JSO |a {"recId":"1838770240","person":[{"family":"Jayme","role":"aut","display":"Jayme, Alejandra","given":"Alejandra"},{"display":"Lösel, Philipp","given":"Philipp","family":"Lösel","role":"aut"},{"role":"aut","family":"Fischer","display":"Fischer, Joachim E.","given":"Joachim E."},{"given":"Vincent","display":"Heuveline, Vincent","role":"aut","family":"Heuveline"}],"note":["Gesehen am 09.03.2023"],"language":["eng"],"name":{"displayForm":["Alejandra Jayme, Philipp D. Lösel, Joachim Fischer, Vincent Heuveline"]},"relMultPart":[{"pubHistory":["2009 -"],"dispAlt":"Engineering Mathematics and Computing Lab: Preprint series of the Engineering Mathematics and Computing Lab (EMCL)","part":{"number_sort":["2021,2"],"number":["Preprint no. 2021-02"]},"language":["eng"],"corporate":[{"role":"aut","display":"Engineering Mathematics and Computing Lab"}],"disp":"Preprint series of the Engineering Mathematics and Computing Lab (EMCL)","type":{"bibl":"serial","media":"Online-Ressource"},"recId":"776852515","origin":[{"publisherPlace":"Heidelberg","dateIssuedKey":"2009","dateIssuedDisp":"2009-","publisher":"Univ.-Bibliothek"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2750748-8"],"eki":["776852515"],"issn":["2191-0693"]},"title":[{"title":"Preprint series of the Engineering Mathematics and Computing Lab (EMCL)","title_sort":"Preprint series of the Engineering Mathematics and Computing Lab (EMCL)"}]}],"origin":[{"publisherPlace":"Heidelberg","dateIssuedKey":"2021","dateIssuedDisp":"May 3, 2021","publisher":"Universiätsbibliothek"}],"title":[{"title":"Comparison of machine learning methods for predicting employee absences","title_sort":"Comparison of machine learning methods for predicting employee absences"}],"type":{"media":"Online-Ressource","bibl":"book"},"physDesc":[{"extent":"1 Online-Ressource (21 Seiten)"}],"id":{"eki":["1838770240"],"doi":["10.11588/emclpp.2021.02.81078"]}} 
SRT |a JAYMEALEJACOMPARISON3202