Computing the spectral action for fuzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models

A fuzzy geometry is a certain type of spectral triple whose Dirac operator crucially turns out to be a finite matrix. This notion incorporates familiar examples like fuzzy spheres and fuzzy tori. In the framework of random noncommutative geometry, we use Barrett’s characterization of Dirac operators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pérez Sánchez, Carlos Ignacio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 December 2022
In: Journal of noncommutative geometry
Year: 2022, Jahrgang: 16, Heft: 4, Pages: 1137-1178
ISSN:1661-6960
DOI:10.4171/jncg/482
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/jncg/482
Verlag, lizenzpflichtig, Volltext: https://ems.press/journals/jncg/articles/8830438
Volltext
Verfasserangaben:Carlos I. Pérez-Sánchez

MARC

LEADER 00000caa a2200000 c 4500
001 1839200839
003 DE-627
005 20230706230643.0
007 cr uuu---uuuuu
008 230315s2022 xx |||||o 00| ||eng c
024 7 |a 10.4171/jncg/482  |2 doi 
035 |a (DE-627)1839200839 
035 |a (DE-599)KXP1839200839 
035 |a (OCoLC)1389534373 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Pérez Sánchez, Carlos Ignacio  |d 1984-  |e VerfasserIn  |0 (DE-588)1152350676  |0 (DE-627)1013887212  |0 (DE-576)499845552  |4 aut 
245 1 0 |a Computing the spectral action for fuzzy geometries  |b from random noncommutative geometry to bi-tracial multimatrix models  |c Carlos I. Pérez-Sánchez 
264 1 |c 30 December 2022 
300 |a 42 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.03.2023 
520 |a A fuzzy geometry is a certain type of spectral triple whose Dirac operator crucially turns out to be a finite matrix. This notion incorporates familiar examples like fuzzy spheres and fuzzy tori. In the framework of random noncommutative geometry, we use Barrett’s characterization of Dirac operators of fuzzy geometries in order to systematically compute the spectral action S(D)=Tr⁡f(D)S(D)=Trf(D) for 2n2n-dimensional fuzzy geometries. In contrast to the original Chamseddine–Connes spectral action, we take a polynomial ff with f(x)→∞f(x)→∞ as ∣x∣→∞∣x∣→∞ in order to obtain a well-defined path integral that can be stated as a random matrix model with action of the type S(D)=N⋅tr⁡F+∑itr⁡Ai⋅tr⁡BiS(D)=N⋅trF+∑i​trAi​⋅trBi​, being FF, AiAi​ and BiBi​ noncommutative polynomials in 22n−122n−1 complex N×NN×N matrices that parametrize the Dirac operator DD. For arbitrary signature—thus for any admissible \textscko\textscko-dimension—formulas for 22-dimensional fuzzy geometries are given up to a sextic polynomial, and up to a quartic polynomial for 44-dimensional ones, with focus on the octo-matrix models for Lorentzian and Riemannian signatures. The noncommutative polynomials FF, AiAi​ and BiBi​ are obtained via chord diagrams and satisfy: independence of NN; self-adjointness of the main polynomial FF (modulo cyclic reordering of each monomial); also up to cyclicity, either self-adjointness or anti-self-adjointness of AiAi​ and BiBi​ simultaneously, for fixed ii. Collectively, this favors a free probabilistic perspective for the large-NN limit we elaborate on. 
773 0 8 |i Enthalten in  |t Journal of noncommutative geometry  |d Zurich : EMS Publ., 2007  |g 16(2022), 4 vom: Dez., Seite 1137-1178  |h Online-Ressource  |w (DE-627)521692008  |w (DE-600)2264296-1  |w (DE-576)336141610  |x 1661-6960  |7 nnas  |a Computing the spectral action for fuzzy geometries from random noncommutative geometry to bi-tracial multimatrix models 
773 1 8 |g volume:16  |g year:2022  |g number:4  |g month:12  |g pages:1137-1178  |g extent:42  |a Computing the spectral action for fuzzy geometries from random noncommutative geometry to bi-tracial multimatrix models 
856 4 0 |u https://doi.org/10.4171/jncg/482  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://ems.press/journals/jncg/articles/8830438  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230315 
993 |a Article 
994 |a 2022 
998 |g 1152350676  |a Pérez Sánchez, Carlos Ignacio  |m 1152350676:Pérez Sánchez, Carlos Ignacio  |d 130000  |d 130300  |e 130000PP1152350676  |e 130300PP1152350676  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j  |y j 
999 |a KXP-PPN1839200839  |e 4290321917 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Carlos I. Pérez-Sánchez"]},"origin":[{"dateIssuedDisp":"30 December 2022","dateIssuedKey":"2022"}],"id":{"eki":["1839200839"],"doi":["10.4171/jncg/482"]},"physDesc":[{"extent":"42 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2007","publisher":"EMS Publ.","dateIssuedDisp":"2007-","publisherPlace":"Zurich"}],"id":{"issn":["1661-6960"],"zdb":["2264296-1"],"eki":["521692008"],"doi":["10.4171/JNCG"]},"name":{"displayForm":["European Mathematical Society"]},"pubHistory":["1.2007 -"],"part":{"volume":"16","text":"16(2022), 4 vom: Dez., Seite 1137-1178","extent":"42","year":"2022","issue":"4","pages":"1137-1178"},"disp":"Computing the spectral action for fuzzy geometries from random noncommutative geometry to bi-tracial multimatrix modelsJournal of noncommutative geometry","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 17.09.2021"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"European Mathematical Society","role":"isb"}],"language":["eng"],"recId":"521692008","title":[{"title_sort":"Journal of noncommutative geometry","title":"Journal of noncommutative geometry"}]}],"person":[{"role":"aut","display":"Pérez Sánchez, Carlos Ignacio","roleDisplay":"VerfasserIn","given":"Carlos Ignacio","family":"Pérez Sánchez"}],"title":[{"title_sort":"Computing the spectral action for fuzzy geometries","title":"Computing the spectral action for fuzzy geometries","subtitle":"from random noncommutative geometry to bi-tracial multimatrix models"}],"note":["Gesehen am 15.03.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1839200839"} 
SRT |a PEREZSANCHCOMPUTINGT3020