Computing the spectral action for fuzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models
A fuzzy geometry is a certain type of spectral triple whose Dirac operator crucially turns out to be a finite matrix. This notion incorporates familiar examples like fuzzy spheres and fuzzy tori. In the framework of random noncommutative geometry, we use Barrett’s characterization of Dirac operators...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 December 2022
|
| In: |
Journal of noncommutative geometry
Year: 2022, Jahrgang: 16, Heft: 4, Pages: 1137-1178 |
| ISSN: | 1661-6960 |
| DOI: | 10.4171/jncg/482 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/jncg/482 Verlag, lizenzpflichtig, Volltext: https://ems.press/journals/jncg/articles/8830438 |
| Verfasserangaben: | Carlos I. Pérez-Sánchez |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1839200839 | ||
| 003 | DE-627 | ||
| 005 | 20230706230643.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230315s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.4171/jncg/482 |2 doi | |
| 035 | |a (DE-627)1839200839 | ||
| 035 | |a (DE-599)KXP1839200839 | ||
| 035 | |a (OCoLC)1389534373 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Pérez Sánchez, Carlos Ignacio |d 1984- |e VerfasserIn |0 (DE-588)1152350676 |0 (DE-627)1013887212 |0 (DE-576)499845552 |4 aut | |
| 245 | 1 | 0 | |a Computing the spectral action for fuzzy geometries |b from random noncommutative geometry to bi-tracial multimatrix models |c Carlos I. Pérez-Sánchez |
| 264 | 1 | |c 30 December 2022 | |
| 300 | |a 42 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.03.2023 | ||
| 520 | |a A fuzzy geometry is a certain type of spectral triple whose Dirac operator crucially turns out to be a finite matrix. This notion incorporates familiar examples like fuzzy spheres and fuzzy tori. In the framework of random noncommutative geometry, we use Barrett’s characterization of Dirac operators of fuzzy geometries in order to systematically compute the spectral action S(D)=Trf(D)S(D)=Trf(D) for 2n2n-dimensional fuzzy geometries. In contrast to the original Chamseddine–Connes spectral action, we take a polynomial ff with f(x)→∞f(x)→∞ as ∣x∣→∞∣x∣→∞ in order to obtain a well-defined path integral that can be stated as a random matrix model with action of the type S(D)=N⋅trF+∑itrAi⋅trBiS(D)=N⋅trF+∑itrAi⋅trBi, being FF, AiAi and BiBi noncommutative polynomials in 22n−122n−1 complex N×NN×N matrices that parametrize the Dirac operator DD. For arbitrary signature—thus for any admissible \textscko\textscko-dimension—formulas for 22-dimensional fuzzy geometries are given up to a sextic polynomial, and up to a quartic polynomial for 44-dimensional ones, with focus on the octo-matrix models for Lorentzian and Riemannian signatures. The noncommutative polynomials FF, AiAi and BiBi are obtained via chord diagrams and satisfy: independence of NN; self-adjointness of the main polynomial FF (modulo cyclic reordering of each monomial); also up to cyclicity, either self-adjointness or anti-self-adjointness of AiAi and BiBi simultaneously, for fixed ii. Collectively, this favors a free probabilistic perspective for the large-NN limit we elaborate on. | ||
| 773 | 0 | 8 | |i Enthalten in |t Journal of noncommutative geometry |d Zurich : EMS Publ., 2007 |g 16(2022), 4 vom: Dez., Seite 1137-1178 |h Online-Ressource |w (DE-627)521692008 |w (DE-600)2264296-1 |w (DE-576)336141610 |x 1661-6960 |7 nnas |a Computing the spectral action for fuzzy geometries from random noncommutative geometry to bi-tracial multimatrix models |
| 773 | 1 | 8 | |g volume:16 |g year:2022 |g number:4 |g month:12 |g pages:1137-1178 |g extent:42 |a Computing the spectral action for fuzzy geometries from random noncommutative geometry to bi-tracial multimatrix models |
| 856 | 4 | 0 | |u https://doi.org/10.4171/jncg/482 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://ems.press/journals/jncg/articles/8830438 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230315 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1152350676 |a Pérez Sánchez, Carlos Ignacio |m 1152350676:Pérez Sánchez, Carlos Ignacio |d 130000 |d 130300 |e 130000PP1152350676 |e 130300PP1152350676 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1839200839 |e 4290321917 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Carlos I. Pérez-Sánchez"]},"origin":[{"dateIssuedDisp":"30 December 2022","dateIssuedKey":"2022"}],"id":{"eki":["1839200839"],"doi":["10.4171/jncg/482"]},"physDesc":[{"extent":"42 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2007","publisher":"EMS Publ.","dateIssuedDisp":"2007-","publisherPlace":"Zurich"}],"id":{"issn":["1661-6960"],"zdb":["2264296-1"],"eki":["521692008"],"doi":["10.4171/JNCG"]},"name":{"displayForm":["European Mathematical Society"]},"pubHistory":["1.2007 -"],"part":{"volume":"16","text":"16(2022), 4 vom: Dez., Seite 1137-1178","extent":"42","year":"2022","issue":"4","pages":"1137-1178"},"disp":"Computing the spectral action for fuzzy geometries from random noncommutative geometry to bi-tracial multimatrix modelsJournal of noncommutative geometry","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 17.09.2021"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"European Mathematical Society","role":"isb"}],"language":["eng"],"recId":"521692008","title":[{"title_sort":"Journal of noncommutative geometry","title":"Journal of noncommutative geometry"}]}],"person":[{"role":"aut","display":"Pérez Sánchez, Carlos Ignacio","roleDisplay":"VerfasserIn","given":"Carlos Ignacio","family":"Pérez Sánchez"}],"title":[{"title_sort":"Computing the spectral action for fuzzy geometries","title":"Computing the spectral action for fuzzy geometries","subtitle":"from random noncommutative geometry to bi-tracial multimatrix models"}],"note":["Gesehen am 15.03.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1839200839"} | ||
| SRT | |a PEREZSANCHCOMPUTINGT3020 | ||