Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing?

Background - Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available. - Objective - To determine whether a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Löffler, Chiara (VerfasserIn) , Ortiz Bruechle, Nadina (VerfasserIn) , Jung, Max (VerfasserIn) , Seillier, Lancelot (VerfasserIn) , Rose, Michael (VerfasserIn) , Laleh, Narmin Ghaffari (VerfasserIn) , Knuechel, Ruth (VerfasserIn) , Brinker, Titus Josef (VerfasserIn) , Trautwein, Christian (VerfasserIn) , Gaisa, Nadine T. (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2 June 2022
In: European urology focus
Year: 2022, Jahrgang: 8, Heft: 2, Pages: 472-479
ISSN:2405-4569
DOI:10.1016/j.euf.2021.04.007
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.euf.2021.04.007
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2405456921001139
Volltext
Verfasserangaben:Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J. Brinker, Christian Trautwein, Nadine T. Gaisa, Jakob N. Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1839555297
003 DE-627
005 20230706230448.0
007 cr uuu---uuuuu
008 230320s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.euf.2021.04.007  |2 doi 
035 |a (DE-627)1839555297 
035 |a (DE-599)KXP1839555297 
035 |a (OCoLC)1389534227 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Löffler, Chiara  |e VerfasserIn  |0 (DE-588)1254183493  |0 (DE-627)1796796646  |4 aut 
245 1 0 |a Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer  |b a possible preselection for molecular testing?  |c Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J. Brinker, Christian Trautwein, Nadine T. Gaisa, Jakob N. Kather 
264 1 |c 2 June 2022 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.03.2023 
520 |a Background - Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available. - Objective - To determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer. - Design, setting, and participants - We trained a deep learning network to detect FGFR3 mutations on digitized slides of muscle-invasive bladder cancers stained with hematoxylin and eosin from the Cancer Genome Atlas (TCGA) cohort (n = 327) and validated the algorithm on the “Aachen” cohort (n = 182; n = 121 pT2-4, n = 34 stroma-invasive pT1, and n = 27 noninvasive pTa tumors). - Outcome measurements and statistical analysis - The primary endpoint was the area under the receiver operating curve (AUROC) for mutation detection. Performance of the deep learning system was compared with visual scoring by an uropathologist. - Results and limitations - In the TCGA cohort, FGFR3 mutations were detected with an AUROC of 0.701 (p < 0.0001). In the Aachen cohort, FGFR3 mutants were found with an AUROC of 0.725 (p < 0.0001). When trained on TCGA, the network generalized to the Aachen cohort, and detected FGFR3 mutants with an AUROC of 0.625 (p = 0.0112). A subgroup analysis and histological evaluation found highest accuracy in papillary growth, luminal gene expression subtypes, females, and American Joint Committee on Cancer (AJCC) stage II tumors. In a head-to-head comparison, the deep learning system outperformed the uropathologist in detecting FGFR3 mutants. - Conclusions - Our computer-based artificial intelligence system was able to detect genetic alterations of the FGFR3 gene of bladder cancer patients directly from histological slides. In the future, this system could be used to preselect patients for further molecular testing. However, analyses of larger, multicenter, muscle-invasive bladder cancer cohorts are now needed in order to validate and extend our findings. - Patient summary - In this report, a computer-based artificial intelligence (AI) system was applied to histological slides to predict genetic alterations of the FGFR3 gene in bladder cancer. We found that the AI system was able to find the alteration with high accuracy. In the future, this system could be used to preselect patients for further molecular testing. 
650 4 |a Artificial intelligence 
650 4 |a Bladder cancer 
650 4 |a Deep learning 
650 4 |a FGFR3 mutations 
650 4 |a Molecular testing for fibroblast growth factor receptor therapy 
700 1 |a Ortiz Bruechle, Nadina  |e VerfasserIn  |4 aut 
700 1 |a Jung, Max  |e VerfasserIn  |4 aut 
700 1 |a Seillier, Lancelot  |e VerfasserIn  |4 aut 
700 1 |a Rose, Michael  |e VerfasserIn  |4 aut 
700 1 |a Laleh, Narmin Ghaffari  |e VerfasserIn  |4 aut 
700 1 |a Knuechel, Ruth  |e VerfasserIn  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
700 1 |a Trautwein, Christian  |e VerfasserIn  |4 aut 
700 1 |a Gaisa, Nadine T.  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t European urology focus  |d Amsterdam : Elsevier, 2015  |g 8(2022), 2 vom: März, Seite 472-479  |h Online-Ressource  |w (DE-627)863008194  |w (DE-600)2861750-2  |w (DE-576)474000001  |x 2405-4569  |7 nnas  |a Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer a possible preselection for molecular testing? 
773 1 8 |g volume:8  |g year:2022  |g number:2  |g month:03  |g pages:472-479  |g extent:8  |a Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer a possible preselection for molecular testing? 
856 4 0 |u https://doi.org/10.1016/j.euf.2021.04.007  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2405456921001139  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230320 
993 |a Article 
994 |a 2022 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 11  |y j 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 8 
999 |a KXP-PPN1839555297  |e 4293176705 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J. Brinker, Christian Trautwein, Nadine T. Gaisa, Jakob N. Kather"]},"id":{"eki":["1839555297"],"doi":["10.1016/j.euf.2021.04.007"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2 June 2022"}],"relHost":[{"origin":[{"publisher":"Elsevier","dateIssuedDisp":"[2015]-","publisherPlace":"Amsterdam"}],"title":[{"title":"European urology focus","title_sort":"European urology focus"}],"note":["Gesehen am 13. Juli 2016"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"863008194","physDesc":[{"extent":"Online-Ressource"}],"disp":"Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer a possible preselection for molecular testing?European urology focus","pubHistory":["Volume 1, issue 1 (August 2015)-"],"name":{"displayForm":["European Association of Urology (EAU)"]},"part":{"volume":"8","year":"2022","text":"8(2022), 2 vom: März, Seite 472-479","extent":"8","issue":"2","pages":"472-479"},"id":{"issn":["2405-4569"],"eki":["863008194"],"zdb":["2861750-2"]}}],"person":[{"given":"Chiara","role":"aut","family":"Löffler","display":"Löffler, Chiara"},{"role":"aut","given":"Nadina","family":"Ortiz Bruechle","display":"Ortiz Bruechle, Nadina"},{"display":"Jung, Max","family":"Jung","role":"aut","given":"Max"},{"role":"aut","given":"Lancelot","family":"Seillier","display":"Seillier, Lancelot"},{"display":"Rose, Michael","family":"Rose","role":"aut","given":"Michael"},{"given":"Narmin Ghaffari","role":"aut","family":"Laleh","display":"Laleh, Narmin Ghaffari"},{"given":"Ruth","role":"aut","family":"Knuechel","display":"Knuechel, Ruth"},{"display":"Brinker, Titus Josef","family":"Brinker","given":"Titus Josef","role":"aut"},{"role":"aut","given":"Christian","family":"Trautwein","display":"Trautwein, Christian"},{"display":"Gaisa, Nadine T.","role":"aut","given":"Nadine T.","family":"Gaisa"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"aut"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 20.03.2023"],"title":[{"title":"Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer","title_sort":"Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer","subtitle":"a possible preselection for molecular testing?"}],"physDesc":[{"extent":"8 S."}],"recId":"1839555297"} 
SRT |a LOEFFLERCHARTIFICIAL2202