Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing?
Background - Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available. - Objective - To determine whether a...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2 June 2022
|
| In: |
European urology focus
Year: 2022, Jahrgang: 8, Heft: 2, Pages: 472-479 |
| ISSN: | 2405-4569 |
| DOI: | 10.1016/j.euf.2021.04.007 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.euf.2021.04.007 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2405456921001139 |
| Verfasserangaben: | Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J. Brinker, Christian Trautwein, Nadine T. Gaisa, Jakob N. Kather |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1839555297 | ||
| 003 | DE-627 | ||
| 005 | 20230706230448.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230320s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.euf.2021.04.007 |2 doi | |
| 035 | |a (DE-627)1839555297 | ||
| 035 | |a (DE-599)KXP1839555297 | ||
| 035 | |a (OCoLC)1389534227 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Löffler, Chiara |e VerfasserIn |0 (DE-588)1254183493 |0 (DE-627)1796796646 |4 aut | |
| 245 | 1 | 0 | |a Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer |b a possible preselection for molecular testing? |c Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J. Brinker, Christian Trautwein, Nadine T. Gaisa, Jakob N. Kather |
| 264 | 1 | |c 2 June 2022 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 20.03.2023 | ||
| 520 | |a Background - Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available. - Objective - To determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer. - Design, setting, and participants - We trained a deep learning network to detect FGFR3 mutations on digitized slides of muscle-invasive bladder cancers stained with hematoxylin and eosin from the Cancer Genome Atlas (TCGA) cohort (n = 327) and validated the algorithm on the “Aachen” cohort (n = 182; n = 121 pT2-4, n = 34 stroma-invasive pT1, and n = 27 noninvasive pTa tumors). - Outcome measurements and statistical analysis - The primary endpoint was the area under the receiver operating curve (AUROC) for mutation detection. Performance of the deep learning system was compared with visual scoring by an uropathologist. - Results and limitations - In the TCGA cohort, FGFR3 mutations were detected with an AUROC of 0.701 (p < 0.0001). In the Aachen cohort, FGFR3 mutants were found with an AUROC of 0.725 (p < 0.0001). When trained on TCGA, the network generalized to the Aachen cohort, and detected FGFR3 mutants with an AUROC of 0.625 (p = 0.0112). A subgroup analysis and histological evaluation found highest accuracy in papillary growth, luminal gene expression subtypes, females, and American Joint Committee on Cancer (AJCC) stage II tumors. In a head-to-head comparison, the deep learning system outperformed the uropathologist in detecting FGFR3 mutants. - Conclusions - Our computer-based artificial intelligence system was able to detect genetic alterations of the FGFR3 gene of bladder cancer patients directly from histological slides. In the future, this system could be used to preselect patients for further molecular testing. However, analyses of larger, multicenter, muscle-invasive bladder cancer cohorts are now needed in order to validate and extend our findings. - Patient summary - In this report, a computer-based artificial intelligence (AI) system was applied to histological slides to predict genetic alterations of the FGFR3 gene in bladder cancer. We found that the AI system was able to find the alteration with high accuracy. In the future, this system could be used to preselect patients for further molecular testing. | ||
| 650 | 4 | |a Artificial intelligence | |
| 650 | 4 | |a Bladder cancer | |
| 650 | 4 | |a Deep learning | |
| 650 | 4 | |a FGFR3 mutations | |
| 650 | 4 | |a Molecular testing for fibroblast growth factor receptor therapy | |
| 700 | 1 | |a Ortiz Bruechle, Nadina |e VerfasserIn |4 aut | |
| 700 | 1 | |a Jung, Max |e VerfasserIn |4 aut | |
| 700 | 1 | |a Seillier, Lancelot |e VerfasserIn |4 aut | |
| 700 | 1 | |a Rose, Michael |e VerfasserIn |4 aut | |
| 700 | 1 | |a Laleh, Narmin Ghaffari |e VerfasserIn |4 aut | |
| 700 | 1 | |a Knuechel, Ruth |e VerfasserIn |4 aut | |
| 700 | 1 | |a Brinker, Titus Josef |d 1990- |e VerfasserIn |0 (DE-588)1156309395 |0 (DE-627)1018860487 |0 (DE-576)502097434 |4 aut | |
| 700 | 1 | |a Trautwein, Christian |e VerfasserIn |4 aut | |
| 700 | 1 | |a Gaisa, Nadine T. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kather, Jakob Nikolas |d 1989- |e VerfasserIn |0 (DE-588)1064064914 |0 (DE-627)812897587 |0 (DE-576)423589091 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t European urology focus |d Amsterdam : Elsevier, 2015 |g 8(2022), 2 vom: März, Seite 472-479 |h Online-Ressource |w (DE-627)863008194 |w (DE-600)2861750-2 |w (DE-576)474000001 |x 2405-4569 |7 nnas |a Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer a possible preselection for molecular testing? |
| 773 | 1 | 8 | |g volume:8 |g year:2022 |g number:2 |g month:03 |g pages:472-479 |g extent:8 |a Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer a possible preselection for molecular testing? |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.euf.2021.04.007 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S2405456921001139 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230320 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1064064914 |a Kather, Jakob Nikolas |m 1064064914:Kather, Jakob Nikolas |d 910000 |d 910100 |e 910000PK1064064914 |e 910100PK1064064914 |k 0/910000/ |k 1/910000/910100/ |p 11 |y j | ||
| 998 | |g 1156309395 |a Brinker, Titus Josef |m 1156309395:Brinker, Titus Josef |d 50000 |e 50000PB1156309395 |k 0/50000/ |p 8 | ||
| 999 | |a KXP-PPN1839555297 |e 4293176705 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Chiara Maria Lavinia Loeffler, Nadina Ortiz Bruechle, Max Jung, Lancelot Seillier, Michael Rose, Narmin Ghaffari Laleh, Ruth Knuechel, Titus J. Brinker, Christian Trautwein, Nadine T. Gaisa, Jakob N. Kather"]},"id":{"eki":["1839555297"],"doi":["10.1016/j.euf.2021.04.007"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2 June 2022"}],"relHost":[{"origin":[{"publisher":"Elsevier","dateIssuedDisp":"[2015]-","publisherPlace":"Amsterdam"}],"title":[{"title":"European urology focus","title_sort":"European urology focus"}],"note":["Gesehen am 13. Juli 2016"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"863008194","physDesc":[{"extent":"Online-Ressource"}],"disp":"Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer a possible preselection for molecular testing?European urology focus","pubHistory":["Volume 1, issue 1 (August 2015)-"],"name":{"displayForm":["European Association of Urology (EAU)"]},"part":{"volume":"8","year":"2022","text":"8(2022), 2 vom: März, Seite 472-479","extent":"8","issue":"2","pages":"472-479"},"id":{"issn":["2405-4569"],"eki":["863008194"],"zdb":["2861750-2"]}}],"person":[{"given":"Chiara","role":"aut","family":"Löffler","display":"Löffler, Chiara"},{"role":"aut","given":"Nadina","family":"Ortiz Bruechle","display":"Ortiz Bruechle, Nadina"},{"display":"Jung, Max","family":"Jung","role":"aut","given":"Max"},{"role":"aut","given":"Lancelot","family":"Seillier","display":"Seillier, Lancelot"},{"display":"Rose, Michael","family":"Rose","role":"aut","given":"Michael"},{"given":"Narmin Ghaffari","role":"aut","family":"Laleh","display":"Laleh, Narmin Ghaffari"},{"given":"Ruth","role":"aut","family":"Knuechel","display":"Knuechel, Ruth"},{"display":"Brinker, Titus Josef","family":"Brinker","given":"Titus Josef","role":"aut"},{"role":"aut","given":"Christian","family":"Trautwein","display":"Trautwein, Christian"},{"display":"Gaisa, Nadine T.","role":"aut","given":"Nadine T.","family":"Gaisa"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"aut"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 20.03.2023"],"title":[{"title":"Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer","title_sort":"Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer","subtitle":"a possible preselection for molecular testing?"}],"physDesc":[{"extent":"8 S."}],"recId":"1839555297"} | ||
| SRT | |a LOEFFLERCHARTIFICIAL2202 | ||