Can machine learning from real-world data support drug treatment decisions?: a prediction modeling case for direct oral anticoagulants

Background:Decision making for the ?best? treatment is particularly challenging in situations in which individual patient response to drugs can largely differ from average treatment effects. By estimating individual treatment effects (ITEs), we aimed to demonstrate how strokes, major bleeding events...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meid, Andreas (VerfasserIn) , Wirbka, Lucas (VerfasserIn) , Groll, Andreas (VerfasserIn) , Haefeli, Walter E. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: Medical decision making
Year: 2022, Jahrgang: 42, Heft: 5, Pages: 587-598
ISSN:1552-681X
DOI:10.1177/0272989X211064604
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1177/0272989X211064604
Verlag, kostenfrei, Volltext: https://journals.sagepub.com/doi/10.1177/0272989X211064604
Volltext
Verfasserangaben:Andreas D. Meid, Lucas Wirbka, ARMIN Study Group, Andreas Groll, and Walter E. Haefeli

MARC

LEADER 00000caa a2200000 c 4500
001 1839591706
003 DE-627
005 20230706230406.0
007 cr uuu---uuuuu
008 230320s2022 xx |||||o 00| ||eng c
024 7 |a 10.1177/0272989X211064604  |2 doi 
035 |a (DE-627)1839591706 
035 |a (DE-599)KXP1839591706 
035 |a (OCoLC)1389534101 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Meid, Andreas  |d 1981-  |e VerfasserIn  |0 (DE-588)1076301991  |0 (DE-627)834660377  |0 (DE-576)445184582  |4 aut 
245 1 0 |a Can machine learning from real-world data support drug treatment decisions?  |b a prediction modeling case for direct oral anticoagulants  |c Andreas D. Meid, Lucas Wirbka, ARMIN Study Group, Andreas Groll, and Walter E. Haefeli 
264 1 |c 2022 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Article first published online: December 15, 2021 
500 |a Gesehen am 20.03.2023 
520 |a Background:Decision making for the ?best? treatment is particularly challenging in situations in which individual patient response to drugs can largely differ from average treatment effects. By estimating individual treatment effects (ITEs), we aimed to demonstrate how strokes, major bleeding events, and a composite of both could be reduced by model-assisted recommendations for a particular direct oral anticoagulant (DOAC).Methods:In German claims data for the calendar years 2014?2018, we selected 29 901 new users of the DOACs rivaroxaban and apixaban. Random forests considered binary events within 1 y to estimate ITEs under each DOAC according to the X-learner algorithm with 29 potential effect modifiers; treatment recommendations were based on these estimated ITEs. Model performance was evaluated by the c-for-benefit statistics, absolute risk reduction (ARR), and absolute risk difference (ARD) by trial emulation.Results:A significant proportion of patients would be recommended a different treatment option than they actually received. The stroke model significantly discriminated patients for higher benefit and thus indicated improved decisions by reduced outcomes (c-for-benefit: 0.56; 95% confidence interval [0.52; 0.60]). In the group with apixaban recommendation, the model also improved the composite endpoint (ARR: 1.69 % [0.39; 2.97]). In trial emulations, model-assisted recommendations significantly reduced the composite event rate (ARD: ?0.78 % [?1.40; ?0.03]).Conclusions:If prescribers are undecided about the potential benefits of different treatment options, ITEs can support decision making, especially if evidence is inconclusive, risk-benefit profiles of therapeutic alternatives differ significantly, and the patients? complexity deviates from ?typical? study populations. In the exemplary case for DOACs and potentially in other situations, the significant impact could also become practically relevant if recommendations were available in an automated way as part of decision making.HighlightsIt was possible to calculate individual treatment effects (ITEs) from routine claims data for rivaroxaban and apixaban, and the characteristics between the groups with recommendation for one or the other option differed significantly.ITEs resulted in recommendations that were significantly superior to usual (observed) treatment allocations in terms of absolute risk reduction, both separately for stroke and in the composite endpoint of stroke and major bleeding.When similar patients from routine data were selected (precision cohorts) for patients with a strong recommendation for one option or the other, those similar patients under the respective recommendation showed a significantly better prognosis compared with the alternative option.Many steps may still be needed on the way to clinical practice, but the principle of decision support developed from routine data may point the way toward future decision-making processes. 
700 1 |a Wirbka, Lucas  |d 1995-  |e VerfasserIn  |0 (DE-588)1213310687  |0 (DE-627)1703847997  |4 aut 
700 1 |a Groll, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Haefeli, Walter E.  |d 1958-  |e VerfasserIn  |0 (DE-588)124572359  |0 (DE-627)656806141  |0 (DE-576)340514221  |4 aut 
773 0 8 |i Enthalten in  |t Medical decision making  |d Thousand Oaks, Calif. : Sage Publ., 1981  |g 42(2022), 5, Seite 587-598  |h Online-Ressource  |w (DE-627)326172483  |w (DE-600)2040405-0  |w (DE-576)094531676  |x 1552-681X  |7 nnas  |a Can machine learning from real-world data support drug treatment decisions? a prediction modeling case for direct oral anticoagulants 
773 1 8 |g volume:42  |g year:2022  |g number:5  |g pages:587-598  |g extent:12  |a Can machine learning from real-world data support drug treatment decisions? a prediction modeling case for direct oral anticoagulants 
856 4 0 |u https://doi.org/10.1177/0272989X211064604  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://journals.sagepub.com/doi/10.1177/0272989X211064604  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230320 
993 |a Article 
994 |a 2022 
998 |g 124572359  |a Haefeli, Walter E.  |m 124572359:Haefeli, Walter E.  |d 910000  |d 910100  |e 910000PH124572359  |e 910100PH124572359  |k 0/910000/  |k 1/910000/910100/  |p 4  |y j 
998 |g 1213310687  |a Wirbka, Lucas  |m 1213310687:Wirbka, Lucas  |d 910000  |d 910100  |e 910000PW1213310687  |e 910100PW1213310687  |k 0/910000/  |k 1/910000/910100/  |p 2 
998 |g 1076301991  |a Meid, Andreas  |m 1076301991:Meid, Andreas  |d 910000  |d 910100  |e 910000PM1076301991  |e 910100PM1076301991  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1839591706  |e 4293455965 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"subtitle":"a prediction modeling case for direct oral anticoagulants","title":"Can machine learning from real-world data support drug treatment decisions?","title_sort":"Can machine learning from real-world data support drug treatment decisions?"}],"name":{"displayForm":["Andreas D. Meid, Lucas Wirbka, ARMIN Study Group, Andreas Groll, and Walter E. Haefeli"]},"physDesc":[{"extent":"12 S."}],"id":{"eki":["1839591706"],"doi":["10.1177/0272989X211064604"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022"}],"relHost":[{"title":[{"title_sort":"Medical decision making","title":"Medical decision making","subtitle":"MDM"}],"language":["eng"],"disp":"Can machine learning from real-world data support drug treatment decisions? a prediction modeling case for direct oral anticoagulantsMedical decision making","origin":[{"publisher":"Sage Publ.","dateIssuedDisp":"1981-","publisherPlace":"Thousand Oaks, Calif.","dateIssuedKey":"1981"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1552-681X"],"eki":["326172483"],"zdb":["2040405-0"]},"titleAlt":[{"title":"MDM"}],"note":["Gesehen am 10.12.15"],"recId":"326172483","part":{"issue":"5","volume":"42","pages":"587-598","extent":"12","year":"2022","text":"42(2022), 5, Seite 587-598"},"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1981 -"]}],"person":[{"given":"Andreas","role":"aut","roleDisplay":"VerfasserIn","display":"Meid, Andreas","family":"Meid"},{"display":"Wirbka, Lucas","given":"Lucas","role":"aut","roleDisplay":"VerfasserIn","family":"Wirbka"},{"given":"Andreas","roleDisplay":"VerfasserIn","role":"aut","display":"Groll, Andreas","family":"Groll"},{"display":"Haefeli, Walter E.","given":"Walter E.","role":"aut","roleDisplay":"VerfasserIn","family":"Haefeli"}],"language":["eng"],"note":["Article first published online: December 15, 2021","Gesehen am 20.03.2023"],"recId":"1839591706","type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a MEIDANDREACANMACHINE2022