Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRI

Background and purpose - Differentiation of pilocytic astrocytoma (PA) from glioblastoma is difficult using conventional MRI parameters. The purpose of this study was to differentiate these two similar in appearance tumors using quantitative T1 perfusion MRI parameters combined under a machine learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vats, Neha (VerfasserIn) , Sengupta, Anirban (VerfasserIn) , Gupta, Rakesh K. (VerfasserIn) , Patir, Rana (VerfasserIn) , Vaishya, Sandeep (VerfasserIn) , Ahlawat, Sunita (VerfasserIn) , Saini, Jitender (VerfasserIn) , Agarwal, Sumeet (VerfasserIn) , Singh, Anup (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 January 2023
In: Magnetic resonance imaging
Year: 2023, Jahrgang: 98, Pages: 76-82
ISSN:1873-5894
DOI:10.1016/j.mri.2022.12.013
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.mri.2022.12.013
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0730725X22002284
Volltext
Verfasserangaben:Neha Vats, Anirban Sengupta, Rakesh K. Gupta, Rana Patir, Sandeep Vaishya, Sunita Ahlawat, Jitender Saini, Sumeet Agarwal, Anup Singh

MARC

LEADER 00000caa a2200000 c 4500
001 1839655755
003 DE-627
005 20240327080217.0
007 cr uuu---uuuuu
008 230321s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.mri.2022.12.013  |2 doi 
035 |a (DE-627)1839655755 
035 |a (DE-599)KXP1839655755 
035 |a (OCoLC)1389532573 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vats, Neha  |d 1993-  |e VerfasserIn  |0 (DE-588)1283965690  |0 (DE-627)1839656263  |4 aut 
245 1 0 |a Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRI  |c Neha Vats, Anirban Sengupta, Rakesh K. Gupta, Rana Patir, Sandeep Vaishya, Sunita Ahlawat, Jitender Saini, Sumeet Agarwal, Anup Singh 
264 1 |c 22 January 2023 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar 23 Dezember 2022, Artikelversion 22 Januar 2023 
500 |a Gesehen am 21.03.2023 
520 |a Background and purpose - Differentiation of pilocytic astrocytoma (PA) from glioblastoma is difficult using conventional MRI parameters. The purpose of this study was to differentiate these two similar in appearance tumors using quantitative T1 perfusion MRI parameters combined under a machine learning framework. - Materials and methods - This retrospective study included age/sex and location matched 26 PA and 33 glioblastoma patients with tumor histopathological characterization performed using WHO 2016 classification. Multi-parametric MRI data were acquired at 3 T scanner and included T1 perfusion and DWI data along with conventional MRI images. Analysis of T1 perfusion data using a leaky-tracer-kinetic-model, first-pass-model and piecewise-linear-model resulted in multiple quantitative parameters. ADC maps were also computed from DWI data. Tumors were segmented into sub-components such as enhancing and non-enhancing regions, edema and necrotic/cystic regions using T1 perfusion parameters. Enhancing and non-enhancing regions were combined and used as an ROI. A support-vector-machine classifier was developed for the classification of PA versus glioblastoma using T1 perfusion MRI parameters/features. The feature set was optimized using a random-forest based algorithm. Classification was also performed between the two tumor types using the ADC parameter. - Results - T1 perfusion parameter values were significantly different between the two groups. The combination of T1 perfusion parameters classified tumors more accurately with a cross validated error of 9.80% against that of ADC's 17.65% error. - Conclusion - The approach of using quantitative T1 perfusion parameters based upon a support-vector-machine classifier reliably differentiated PA from glioblastoma and performed better classification than ADC. 
650 4 |a Glioblastoma 
650 4 |a Machine learning 
650 4 |a Pilocytic astrocytoma 
650 4 |a SVM 
650 4 |a T perfusion MRI 
700 1 |a Sengupta, Anirban  |e VerfasserIn  |4 aut 
700 1 |a Gupta, Rakesh K.  |e VerfasserIn  |4 aut 
700 1 |a Patir, Rana  |e VerfasserIn  |4 aut 
700 1 |a Vaishya, Sandeep  |e VerfasserIn  |4 aut 
700 1 |a Ahlawat, Sunita  |e VerfasserIn  |4 aut 
700 1 |a Saini, Jitender  |e VerfasserIn  |4 aut 
700 1 |a Agarwal, Sumeet  |e VerfasserIn  |4 aut 
700 1 |a Singh, Anup  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance imaging  |d Amsterdam [u.a.] : Elsevier Science, 1982  |g 98(2023) vom: Jan., Seite 76-82  |h Online-Ressource  |w (DE-627)306661160  |w (DE-600)1500646-3  |w (DE-576)081986750  |x 1873-5894  |7 nnas  |a Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRI 
773 1 8 |g volume:98  |g year:2023  |g month:01  |g pages:76-82  |g extent:7  |a Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRI 
856 4 0 |u https://doi.org/10.1016/j.mri.2022.12.013  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0730725X22002284  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230321 
993 |a Article 
994 |a 2023 
998 |g 1283965690  |a Vats, Neha  |m 1283965690:Vats, Neha  |d 910000  |d 911400  |e 910000PV1283965690  |e 911400PV1283965690  |k 0/910000/  |k 1/910000/911400/  |p 1  |x j 
999 |a KXP-PPN1839655755  |e 4293994866 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"22 January 2023","dateIssuedKey":"2023"}],"id":{"eki":["1839655755"],"doi":["10.1016/j.mri.2022.12.013"]},"name":{"displayForm":["Neha Vats, Anirban Sengupta, Rakesh K. Gupta, Rana Patir, Sandeep Vaishya, Sunita Ahlawat, Jitender Saini, Sumeet Agarwal, Anup Singh"]},"physDesc":[{"extent":"7 S."}],"relHost":[{"title":[{"title":"Magnetic resonance imaging","subtitle":"an international journal of basic research and clinical applications","title_sort":"Magnetic resonance imaging"}],"recId":"306661160","language":["eng"],"disp":"Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRIMagnetic resonance imaging","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 29.01.2020"],"part":{"pages":"76-82","year":"2023","extent":"7","text":"98(2023) vom: Jan., Seite 76-82","volume":"98"},"pubHistory":["1.1982 -"],"id":{"zdb":["1500646-3"],"eki":["306661160"],"issn":["1873-5894"]},"origin":[{"publisher":"Elsevier Science","dateIssuedKey":"1982","dateIssuedDisp":"1982-","publisherPlace":"Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title_sort":"Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRI","title":"Differentiation of pilocytic astrocytoma from glioblastoma using a machine-learning framework based upon quantitative T1 perfusion MRI"}],"person":[{"given":"Neha","family":"Vats","role":"aut","roleDisplay":"VerfasserIn","display":"Vats, Neha"},{"given":"Anirban","family":"Sengupta","role":"aut","display":"Sengupta, Anirban","roleDisplay":"VerfasserIn"},{"given":"Rakesh K.","family":"Gupta","role":"aut","display":"Gupta, Rakesh K.","roleDisplay":"VerfasserIn"},{"display":"Patir, Rana","roleDisplay":"VerfasserIn","role":"aut","family":"Patir","given":"Rana"},{"family":"Vaishya","given":"Sandeep","roleDisplay":"VerfasserIn","display":"Vaishya, Sandeep","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Ahlawat, Sunita","role":"aut","family":"Ahlawat","given":"Sunita"},{"role":"aut","display":"Saini, Jitender","roleDisplay":"VerfasserIn","given":"Jitender","family":"Saini"},{"given":"Sumeet","family":"Agarwal","role":"aut","roleDisplay":"VerfasserIn","display":"Agarwal, Sumeet"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Singh, Anup","given":"Anup","family":"Singh"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online verfügbar 23 Dezember 2022, Artikelversion 22 Januar 2023","Gesehen am 21.03.2023"],"language":["eng"],"recId":"1839655755"} 
SRT |a VATSNEHASEDIFFERENTI2220