Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration

Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Siemsen, Katharina (VerfasserIn) , Rajput, Sunil (VerfasserIn) , Rasch, Florian (VerfasserIn) , Taheri, Fereydoon (VerfasserIn) , Adelung, Rainer (VerfasserIn) , Lammerding, Jan (VerfasserIn) , Selhuber-Unkel, Christine (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Advanced healthcare materials
Year: 2021, Jahrgang: 10, Heft: 23, Pages: 1-11
ISSN:2192-2659
DOI:10.1002/adhm.202100625
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/adhm.202100625
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202100625
Volltext
Verfasserangaben:Katharina Siemsen, Sunil Rajput, Florian Rasch, Fereydoon Taheri, Rainer Adelung, Jan Lammerding, and Christine Selhuber-Unkel

MARC

LEADER 00000caa a2200000 c 4500
001 1840120568
003 DE-627
005 20230707005953.0
007 cr uuu---uuuuu
008 230327s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adhm.202100625  |2 doi 
035 |a (DE-627)1840120568 
035 |a (DE-599)KXP1840120568 
035 |a (OCoLC)1389537984 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 35  |2 sdnb 
100 1 |a Siemsen, Katharina  |e VerfasserIn  |0 (DE-588)1284483509  |0 (DE-627)184012038X  |4 aut 
245 1 0 |a Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration  |c Katharina Siemsen, Sunil Rajput, Florian Rasch, Fereydoon Taheri, Rainer Adelung, Jan Lammerding, and Christine Selhuber-Unkel 
264 1 |c 2021 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.03.2023 
520 |a Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering. 
650 4 |a 3D architecture 
650 4 |a cell migration 
650 4 |a confined microarchitecture 
650 4 |a hydrogels 
650 4 |a nuclear envelopes 
700 1 |a Rajput, Sunil  |e VerfasserIn  |0 (DE-588)1261824814  |0 (DE-627)1809120896  |4 aut 
700 1 |a Rasch, Florian  |e VerfasserIn  |4 aut 
700 1 |a Taheri, Fereydoon  |d 1986-  |e VerfasserIn  |0 (DE-588)1185413278  |0 (DE-627)1664599061  |4 aut 
700 1 |a Adelung, Rainer  |e VerfasserIn  |4 aut 
700 1 |a Lammerding, Jan  |e VerfasserIn  |4 aut 
700 1 |a Selhuber-Unkel, Christine  |d 1980-  |e VerfasserIn  |0 (DE-588)132414759  |0 (DE-627)522682626  |0 (DE-576)299131491  |4 aut 
773 0 8 |i Enthalten in  |t Advanced healthcare materials  |d Weinheim : Wiley-VCH, 2012  |g 10(2021), 23, Artikel-ID 2100625, Seite 1-11  |h Online-Ressource  |w (DE-627)683367412  |w (DE-600)2645585-7  |w (DE-576)357226399  |x 2192-2659  |7 nnas  |a Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration 
773 1 8 |g volume:10  |g year:2021  |g number:23  |g elocationid:2100625  |g pages:1-11  |g extent:11  |a Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration 
856 4 0 |u https://doi.org/10.1002/adhm.202100625  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202100625  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230327 
993 |a Article 
994 |a 2021 
998 |g 132414759  |a Selhuber-Unkel, Christine  |m 132414759:Selhuber-Unkel, Christine  |d 700000  |d 728700  |d 160000  |d 160200  |e 700000PS132414759  |e 728700PS132414759  |e 160000PS132414759  |e 160200PS132414759  |k 0/700000/  |k 1/700000/728700/  |k 0/160000/  |k 1/160000/160200/  |p 7  |y j 
998 |g 1185413278  |a Taheri, Fereydoon  |m 1185413278:Taheri, Fereydoon  |d 700000  |d 728700  |d 160000  |d 160200  |e 700000PT1185413278  |e 728700PT1185413278  |e 160000PT1185413278  |e 160200PT1185413278  |k 0/700000/  |k 1/700000/728700/  |k 0/160000/  |k 1/160000/160200/  |p 3 
998 |g 1261824814  |a Rajput, Sunil  |m 1261824814:Rajput, Sunil  |d 700000  |d 728700  |d 160000  |d 160200  |e 700000PR1261824814  |e 728700PR1261824814  |e 160000PR1261824814  |e 160200PR1261824814  |k 0/700000/  |k 1/700000/728700/  |k 0/160000/  |k 1/160000/160200/  |p 2 
999 |a KXP-PPN1840120568  |e 4297354985 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 27.03.2023"],"recId":"1840120568","name":{"displayForm":["Katharina Siemsen, Sunil Rajput, Florian Rasch, Fereydoon Taheri, Rainer Adelung, Jan Lammerding, and Christine Selhuber-Unkel"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"language":["eng"],"person":[{"role":"aut","display":"Siemsen, Katharina","given":"Katharina","family":"Siemsen"},{"given":"Sunil","family":"Rajput","role":"aut","display":"Rajput, Sunil"},{"family":"Rasch","given":"Florian","display":"Rasch, Florian","role":"aut"},{"role":"aut","display":"Taheri, Fereydoon","given":"Fereydoon","family":"Taheri"},{"role":"aut","display":"Adelung, Rainer","given":"Rainer","family":"Adelung"},{"role":"aut","display":"Lammerding, Jan","given":"Jan","family":"Lammerding"},{"role":"aut","display":"Selhuber-Unkel, Christine","given":"Christine","family":"Selhuber-Unkel"}],"relHost":[{"language":["eng"],"title":[{"title":"Advanced healthcare materials","title_sort":"Advanced healthcare materials"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Tunable 3D hydrogel microchannel networks to study confined mammalian cell migrationAdvanced healthcare materials","note":["Gesehen am 5. November 2022"],"part":{"text":"10(2021), 23, Artikel-ID 2100625, Seite 1-11","pages":"1-11","issue":"23","year":"2021","extent":"11","volume":"10"},"pubHistory":["1.2012 -"],"id":{"issn":["2192-2659"],"zdb":["2645585-7"],"eki":["683367412"],"doi":["10.1002/(ISSN)2192-2659"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"683367412","origin":[{"publisherPlace":"Weinheim","publisher":"Wiley-VCH","dateIssuedDisp":"[2012]-"}]}],"title":[{"title":"Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration","title_sort":"Tunable 3D hydrogel microchannel networks to study confined mammalian cell migration"}],"id":{"doi":["10.1002/adhm.202100625"],"eki":["1840120568"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"11 S."}]} 
SRT |a SIEMSENKATTUNABLE3DH2021