Ephemeral learning: augmenting triggers with online-trained normalizing flows
The large data rates at the LHC require an online trigger system to select relevant collisions. Rather than compressing individual events, we propose to compress an entire data set at once. We use a normalizing flow as a deep generative model to learn the probability density of the data online. The...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
07-10-2022
|
| In: |
SciPost physics
Year: 2022, Volume: 13, Issue: 4, Pages: 1-17 |
| ISSN: | 2542-4653 |
| DOI: | 10.21468/SciPostPhys.13.4.087 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.13.4.087 Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.13.4.087 |
| Author Notes: | Anja Butter, Sascha Diefenbacher, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, David Shih and Ramon Winterhalder |
Search Result 1
Ephemeral learning: augmenting triggers with online-trained normalizing flows
Article (Journal)
Chapter/Article
Online Resource