ERGO-ML I: inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks

A fundamental prediction of the ΛCDM cosmology is the hierarchical build-up of structure and therefore the successive merging of galaxies into more massive ones. As one can only observe galaxies at one specific time in the cosmic history, this merger history remains, in principle, unobservable. By u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eisert, Lukas (VerfasserIn) , Pillepich, Annalisa (VerfasserIn) , Nelson, Dylan (VerfasserIn) , Klessen, Ralf S. (VerfasserIn) , Huertas-Company, Marc (VerfasserIn) , Rodriguez-Gomez, Vicente (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Monthly notices of the Royal Astronomical Society
Year: 2023, Jahrgang: 519, Heft: 2, Pages: 2199-2223
ISSN:1365-2966
DOI:10.1093/mnras/stac3295
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/mnras/stac3295
Volltext
Verfasserangaben:Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf S. Klessen, Marc Huertas-Company and Vicente Rodriguez-Gomez

MARC

LEADER 00000caa a2200000 c 4500
001 1840197862
003 DE-627
005 20230706214908.0
007 cr uuu---uuuuu
008 230327s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/mnras/stac3295  |2 doi 
035 |a (DE-627)1840197862 
035 |a (DE-599)KXP1840197862 
035 |a (OCoLC)1389531014 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Eisert, Lukas  |d 1992-  |e VerfasserIn  |0 (DE-588)1273271564  |0 (DE-627)1823036015  |4 aut 
245 1 0 |a ERGO-ML I  |b inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks  |c Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf S. Klessen, Marc Huertas-Company and Vicente Rodriguez-Gomez 
264 1 |c 2023 
300 |b Illustrationen 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.03.2023 
500 |a  Published: 12 November 2022 
520 |a A fundamental prediction of the ΛCDM cosmology is the hierarchical build-up of structure and therefore the successive merging of galaxies into more massive ones. As one can only observe galaxies at one specific time in the cosmic history, this merger history remains, in principle, unobservable. By using the TNG100 simulation of the IllustrisTNG project, we show that it is possible to infer the unobservable stellar assembly and merger history of central galaxies from their observable properties by using machine learning techniques. In particular, in this first paper of ERGO-ML (Extracting Reality from Galaxy Observables with Machine Learning), we choose a set of seven observable integral properties of galaxies to infer the stellar ex-situ fraction, the average merger lookback times and mass ratios, and the lookback time and stellar mass of the last major merger. To infer the posterior distribution for these parameters and hence estimate the uncertainties in the predictions, we use a conditional Invertible Neural Network (cINN). We find that the stellar ex-situ fraction and the time of the last major merger are well-determined by the selected set of observables, that the mass-weighted merger mass ratio is unconstrained, and that, beyond stellar mass, stellar morphology and stellar age are the most informative properties. Finally, we show that the cINN recovers the remaining unexplained scatter and secondary cross-correlations. Overall, this is a first step towards a tool that can be applied to large galaxy surveys in order to infer unobservable properties of the galaxies’ past, enabling empirical studies of galaxy evolution enriched by cosmological simulations. 
700 1 |a Pillepich, Annalisa  |e VerfasserIn  |0 (DE-588)1151829854  |0 (DE-627)1012339327  |0 (DE-576)423800841  |4 aut 
700 1 |a Nelson, Dylan  |e VerfasserIn  |0 (DE-588)115182805X  |0 (DE-627)101233600X  |0 (DE-576)42382581X  |4 aut 
700 1 |a Klessen, Ralf S.  |d 1968-  |e VerfasserIn  |0 (DE-588)120533820  |0 (DE-627)392381532  |0 (DE-576)178685399  |4 aut 
700 1 |a Huertas-Company, Marc  |e VerfasserIn  |0 (DE-588)1198716592  |0 (DE-627)1680888927  |4 aut 
700 1 |a Rodriguez-Gomez, Vicente  |e VerfasserIn  |0 (DE-588)1213043441  |0 (DE-627)1703274164  |0 (DE-576)426836782  |4 aut 
773 0 8 |i Enthalten in  |a Royal Astronomical Society  |t Monthly notices of the Royal Astronomical Society  |d Oxford : Oxford Univ. Press, 1827  |g 519(2023), 2, Seite 2199-2223  |h Online-Ressource  |w (DE-627)314059164  |w (DE-600)2016084-7  |w (DE-576)090955420  |x 1365-2966  |7 nnas 
773 1 8 |g volume:519  |g year:2023  |g number:2  |g pages:2199-2223  |g extent:25  |a ERGO-ML I inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks 
856 4 0 |u https://doi.org/10.1093/mnras/stac3295  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230327 
993 |a Article 
994 |a 2023 
998 |g 120533820  |a Klessen, Ralf S.  |m 120533820:Klessen, Ralf S.  |d 700000  |d 714000  |d 714200  |d 700000  |d 728500  |e 700000PK120533820  |e 714000PK120533820  |e 714200PK120533820  |e 700000PK120533820  |e 728500PK120533820  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |k 0/700000/  |k 1/700000/728500/  |p 4 
998 |g 115182805X  |a Nelson, Dylan  |m 115182805X:Nelson, Dylan  |d 700000  |d 714000  |d 714200  |d 700000  |d 728500  |e 700000PN115182805X  |e 714000PN115182805X  |e 714200PN115182805X  |e 700000PN115182805X  |e 728500PN115182805X  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 1151829854  |a Pillepich, Annalisa  |m 1151829854:Pillepich, Annalisa  |d 130000  |d 700000  |d 728500  |e 130000PP1151829854  |e 700000PP1151829854  |e 728500PP1151829854  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1273271564  |a Eisert, Lukas  |m 1273271564:Eisert, Lukas  |d 130000  |e 130000PE1273271564  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1840197862  |e 4298162818 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf S. Klessen, Marc Huertas-Company and Vicente Rodriguez-Gomez"]},"language":["eng"],"person":[{"given":"Lukas","display":"Eisert, Lukas","family":"Eisert","role":"aut"},{"family":"Pillepich","role":"aut","given":"Annalisa","display":"Pillepich, Annalisa"},{"family":"Nelson","role":"aut","given":"Dylan","display":"Nelson, Dylan"},{"role":"aut","family":"Klessen","given":"Ralf S.","display":"Klessen, Ralf S."},{"display":"Huertas-Company, Marc","given":"Marc","role":"aut","family":"Huertas-Company"},{"display":"Rodriguez-Gomez, Vicente","given":"Vicente","family":"Rodriguez-Gomez","role":"aut"}],"recId":"1840197862","note":["Gesehen am 27.03.2023"," Published: 12 November 2022"],"title":[{"title_sort":"ERGO-ML I","subtitle":"inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks","title":"ERGO-ML I"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1093/mnras/stac3295"],"eki":["1840197862"]},"physDesc":[{"extent":"25 S.","noteIll":"Illustrationen"}],"relHost":[{"corporate":[{"role":"aut","display":"Royal Astronomical Society"}],"disp":"Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 15.01.2018"],"pubHistory":["1.1827 -"],"part":{"text":"519(2023), 2, Seite 2199-2223","issue":"2","pages":"2199-2223","extent":"25","volume":"519","year":"2023"},"language":["eng"],"origin":[{"dateIssuedDisp":"1827-","publisher":"Oxford Univ. Press ; Blackwell ; Wiley-Blackwell","publisherPlace":"Oxford ; Oxford [u.a.] ; Oxford [u.a.]","dateIssuedKey":"1827"}],"id":{"zdb":["2016084-7"],"doi":["10.1111/(ISSN)1365-2966"],"eki":["314059164"],"issn":["1365-2966"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Monthly notices of the Royal Astronomical Society","title":"Monthly notices of the Royal Astronomical Society"}],"recId":"314059164"}],"origin":[{"dateIssuedDisp":"2023","dateIssuedKey":"2023"}]} 
SRT |a EISERTLUKAERGOMLI2023