Two-level Schwarz methods for hybridizable discontinuous Galerkin methods

In this paper, we propose two-level domain decomposition methods for hybridizable discontinuous Galerkin discretizations including hybridized local discontinuous Galerkin, Raviart-Thomas, and Brezzi-Douglas-Marini finite elements for Poisson’s equation. We study the additive Schwarz method as a prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu, Peipei (VerfasserIn) , Rupp, Andreas (VerfasserIn) , Kanschat, Guido (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 February 2023
In: Journal of scientific computing
Year: 2023, Jahrgang: 95, Pages: 1-16
ISSN:1573-7691
DOI:10.1007/s10915-023-02121-9
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-023-02121-9
Volltext
Verfasserangaben:Peipei Lu, Andreas Rupp, Guido Kanschat

MARC

LEADER 00000caa a2200000 c 4500
001 1840300272
003 DE-627
005 20230706214750.0
007 cr uuu---uuuuu
008 230328s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-023-02121-9  |2 doi 
035 |a (DE-627)1840300272 
035 |a (DE-599)KXP1840300272 
035 |a (OCoLC)1389531164 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lu, Peipei  |e VerfasserIn  |0 (DE-588)126913549X  |0 (DE-627)1817800477  |4 aut 
245 1 0 |a Two-level Schwarz methods for hybridizable discontinuous Galerkin methods  |c Peipei Lu, Andreas Rupp, Guido Kanschat 
264 1 |c 15 February 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.03.2023 
520 |a In this paper, we propose two-level domain decomposition methods for hybridizable discontinuous Galerkin discretizations including hybridized local discontinuous Galerkin, Raviart-Thomas, and Brezzi-Douglas-Marini finite elements for Poisson’s equation. We study the additive Schwarz method as a preconditioner and the multiplicative method as an iterative solver. In our algorithm, the same discretization scheme is defined on the coarse mesh. In particular, we use the injection operator developed in [13] and prove that the condition number of the preconditioned system only depends on the fraction between coarse and fine mesh sizes and the overlap width. Numerical experiments underline our analytical findings. 
650 4 |a 65F10 
650 4 |a 65N30 
650 4 |a 65N50 
650 4 |a Additive schwarz 
650 4 |a HDG 
650 4 |a Multigrid 
650 4 |a Preconditioner 
700 1 |a Rupp, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1191198812  |0 (DE-627)1669602907  |4 aut 
700 1 |a Kanschat, Guido  |e VerfasserIn  |0 (DE-588)102535334X  |0 (DE-627)72215612X  |0 (DE-576)175755949  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986  |g 95(2023) vom: Feb., Artikel-ID 9, Seite 1-16  |h Online-Ressource  |w (DE-627)317878395  |w (DE-600)2017260-6  |w (DE-576)121466221  |x 1573-7691  |7 nnas  |a Two-level Schwarz methods for hybridizable discontinuous Galerkin methods 
773 1 8 |g volume:95  |g year:2023  |g month:02  |g elocationid:9  |g pages:1-16  |g extent:16  |a Two-level Schwarz methods for hybridizable discontinuous Galerkin methods 
856 4 0 |u https://doi.org/10.1007/s10915-023-02121-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230328 
993 |a Article 
994 |a 2023 
998 |g 102535334X  |a Kanschat, Guido  |m 102535334X:Kanschat, Guido  |d 700000  |d 708000  |e 700000PK102535334X  |e 708000PK102535334X  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
998 |g 1191198812  |a Rupp, Andreas  |m 1191198812:Rupp, Andreas  |d 130000  |e 130000PR1191198812  |k 0/130000/  |p 2 
999 |a KXP-PPN1840300272  |e 4298584968 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Peipei Lu, Andreas Rupp, Guido Kanschat"]},"language":["eng"],"recId":"1840300272","id":{"doi":["10.1007/s10915-023-02121-9"],"eki":["1840300272"]},"origin":[{"dateIssuedDisp":"15 February 2023","dateIssuedKey":"2023"}],"note":["Gesehen am 28.03.2023"],"physDesc":[{"extent":"16 S."}],"title":[{"title":"Two-level Schwarz methods for hybridizable discontinuous Galerkin methods","title_sort":"Two-level Schwarz methods for hybridizable discontinuous Galerkin methods"}],"person":[{"given":"Peipei","family":"Lu","role":"aut","display":"Lu, Peipei"},{"role":"aut","display":"Rupp, Andreas","family":"Rupp","given":"Andreas"},{"family":"Kanschat","given":"Guido","display":"Kanschat, Guido","role":"aut"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","publisherPlace":"New York, NY [u.a.] ; London [u.a.]","dateIssuedKey":"1986"}],"note":["Gesehen am 01.11.05"],"id":{"eki":["317878395"],"issn":["1573-7691"],"zdb":["2017260-6"]},"pubHistory":["1.1986 -"],"recId":"317878395","part":{"extent":"16","year":"2023","volume":"95","text":"95(2023) vom: Feb., Artikel-ID 9, Seite 1-16","pages":"1-16"},"title":[{"title_sort":"Journal of scientific computing","title":"Journal of scientific computing"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Two-level Schwarz methods for hybridizable discontinuous Galerkin methodsJournal of scientific computing","language":["eng"]}]} 
SRT |a LUPEIPEIRUTWOLEVELSC1520