Two-level Schwarz methods for hybridizable discontinuous Galerkin methods
In this paper, we propose two-level domain decomposition methods for hybridizable discontinuous Galerkin discretizations including hybridized local discontinuous Galerkin, Raviart-Thomas, and Brezzi-Douglas-Marini finite elements for Poisson’s equation. We study the additive Schwarz method as a prec...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 February 2023
|
| In: |
Journal of scientific computing
Year: 2023, Jahrgang: 95, Pages: 1-16 |
| ISSN: | 1573-7691 |
| DOI: | 10.1007/s10915-023-02121-9 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-023-02121-9 |
| Verfasserangaben: | Peipei Lu, Andreas Rupp, Guido Kanschat |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1840300272 | ||
| 003 | DE-627 | ||
| 005 | 20230706214750.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230328s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10915-023-02121-9 |2 doi | |
| 035 | |a (DE-627)1840300272 | ||
| 035 | |a (DE-599)KXP1840300272 | ||
| 035 | |a (OCoLC)1389531164 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Lu, Peipei |e VerfasserIn |0 (DE-588)126913549X |0 (DE-627)1817800477 |4 aut | |
| 245 | 1 | 0 | |a Two-level Schwarz methods for hybridizable discontinuous Galerkin methods |c Peipei Lu, Andreas Rupp, Guido Kanschat |
| 264 | 1 | |c 15 February 2023 | |
| 300 | |a 16 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.03.2023 | ||
| 520 | |a In this paper, we propose two-level domain decomposition methods for hybridizable discontinuous Galerkin discretizations including hybridized local discontinuous Galerkin, Raviart-Thomas, and Brezzi-Douglas-Marini finite elements for Poisson’s equation. We study the additive Schwarz method as a preconditioner and the multiplicative method as an iterative solver. In our algorithm, the same discretization scheme is defined on the coarse mesh. In particular, we use the injection operator developed in [13] and prove that the condition number of the preconditioned system only depends on the fraction between coarse and fine mesh sizes and the overlap width. Numerical experiments underline our analytical findings. | ||
| 650 | 4 | |a 65F10 | |
| 650 | 4 | |a 65N30 | |
| 650 | 4 | |a 65N50 | |
| 650 | 4 | |a Additive schwarz | |
| 650 | 4 | |a HDG | |
| 650 | 4 | |a Multigrid | |
| 650 | 4 | |a Preconditioner | |
| 700 | 1 | |a Rupp, Andreas |d 1992- |e VerfasserIn |0 (DE-588)1191198812 |0 (DE-627)1669602907 |4 aut | |
| 700 | 1 | |a Kanschat, Guido |e VerfasserIn |0 (DE-588)102535334X |0 (DE-627)72215612X |0 (DE-576)175755949 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of scientific computing |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986 |g 95(2023) vom: Feb., Artikel-ID 9, Seite 1-16 |h Online-Ressource |w (DE-627)317878395 |w (DE-600)2017260-6 |w (DE-576)121466221 |x 1573-7691 |7 nnas |a Two-level Schwarz methods for hybridizable discontinuous Galerkin methods |
| 773 | 1 | 8 | |g volume:95 |g year:2023 |g month:02 |g elocationid:9 |g pages:1-16 |g extent:16 |a Two-level Schwarz methods for hybridizable discontinuous Galerkin methods |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10915-023-02121-9 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230328 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 102535334X |a Kanschat, Guido |m 102535334X:Kanschat, Guido |d 700000 |d 708000 |e 700000PK102535334X |e 708000PK102535334X |k 0/700000/ |k 1/700000/708000/ |p 3 |y j | ||
| 998 | |g 1191198812 |a Rupp, Andreas |m 1191198812:Rupp, Andreas |d 130000 |e 130000PR1191198812 |k 0/130000/ |p 2 | ||
| 999 | |a KXP-PPN1840300272 |e 4298584968 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Peipei Lu, Andreas Rupp, Guido Kanschat"]},"language":["eng"],"recId":"1840300272","id":{"doi":["10.1007/s10915-023-02121-9"],"eki":["1840300272"]},"origin":[{"dateIssuedDisp":"15 February 2023","dateIssuedKey":"2023"}],"note":["Gesehen am 28.03.2023"],"physDesc":[{"extent":"16 S."}],"title":[{"title":"Two-level Schwarz methods for hybridizable discontinuous Galerkin methods","title_sort":"Two-level Schwarz methods for hybridizable discontinuous Galerkin methods"}],"person":[{"given":"Peipei","family":"Lu","role":"aut","display":"Lu, Peipei"},{"role":"aut","display":"Rupp, Andreas","family":"Rupp","given":"Andreas"},{"family":"Kanschat","given":"Guido","display":"Kanschat, Guido","role":"aut"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","publisherPlace":"New York, NY [u.a.] ; London [u.a.]","dateIssuedKey":"1986"}],"note":["Gesehen am 01.11.05"],"id":{"eki":["317878395"],"issn":["1573-7691"],"zdb":["2017260-6"]},"pubHistory":["1.1986 -"],"recId":"317878395","part":{"extent":"16","year":"2023","volume":"95","text":"95(2023) vom: Feb., Artikel-ID 9, Seite 1-16","pages":"1-16"},"title":[{"title_sort":"Journal of scientific computing","title":"Journal of scientific computing"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Two-level Schwarz methods for hybridizable discontinuous Galerkin methodsJournal of scientific computing","language":["eng"]}]} | ||
| SRT | |a LUPEIPEIRUTWOLEVELSC1520 | ||