Adaptation to glucose starvation is associated with molecular reorganization of the circadian clock in Neurospora crassa

The circadian clock governs rhythmic cellular functions by driving the expression of a substantial fraction of the genome and thereby significantly contributes to the adaptation to changing environmental conditions. Using the circadian model organism Neurospora crassa, we show that molecular timekee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Szőke, Anita (VerfasserIn) , Sárkány, Orsolya (VerfasserIn) , Schermann, Géza (VerfasserIn) , Kapuy, Orsolya (VerfasserIn) , Diernfellner, Axel (VerfasserIn) , Brunner, Michael (VerfasserIn) , Gyöngyösi, Norbert (VerfasserIn) , Káldi, Krisztina (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 January 2023
In: eLife
Year: 2023, Jahrgang: 12, Pages: 1-26
ISSN:2050-084X
DOI:10.7554/eLife.79765
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.7554/eLife.79765
Volltext
Verfasserangaben:Anita Szőke, Orsolya Sárkány, Géza Schermann, Orsolya Kapuy, Axel CR Diernfellner, Michael Brunner, Norbert Gyöngyösi, Krisztina Káldi
Beschreibung
Zusammenfassung:The circadian clock governs rhythmic cellular functions by driving the expression of a substantial fraction of the genome and thereby significantly contributes to the adaptation to changing environmental conditions. Using the circadian model organism Neurospora crassa, we show that molecular timekeeping is robust even under severe limitation of carbon sources, however, stoichiometry, phosphorylation and subcellular distribution of the key clock components display drastic alterations. Protein kinase A, protein phosphatase 2 A and glycogen synthase kinase are involved in the molecular reorganization of the clock. RNA-seq analysis reveals that the transcriptomic response of metabolism to starvation is highly dependent on the positive clock component WC-1. Moreover, our molecular and phenotypic data indicate that a functional clock facilitates recovery from starvation. We suggest that the molecular clock is a flexible network that allows the organism to maintain rhythmic physiology and preserve fitness even under long-term nutritional stress.
Beschreibung:Gesehen am 31.03.2023
Beschreibung:Online Resource
ISSN:2050-084X
DOI:10.7554/eLife.79765