Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction

Radiomics analysis provides a promising avenue towards the enabling of personalized radiotherapy. Most frequently, prognostic radiomics models are based on features extracted from medical images that are acquired before treatment. Here, we investigate whether combining data from multiple timepoints...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Starke, Sebastian (VerfasserIn) , Zwanenburg, Alexander (VerfasserIn) , Leger, Karoline (VerfasserIn) , Zöphel, Klaus (VerfasserIn) , Kotzerke, Jörg (VerfasserIn) , Krause, Mechthild (VerfasserIn) , Baumann, Michael (VerfasserIn) , Troost, Esther G. C. (VerfasserIn) , Löck, Steffen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 January 2023
In: Cancers
Year: 2023, Jahrgang: 15, Heft: 3, Pages: 1-15
ISSN:2072-6694
DOI:10.3390/cancers15030673
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/cancers15030673
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-6694/15/3/673
Volltext
Verfasserangaben:Sebastian Starke, Alexander Zwanenburg, Karoline Leger, Klaus Zöphel, Jörg Kotzerke, Mechthild Krause, Michael Baumann, Esther G.C. Troost and Steffen Löck

MARC

LEADER 00000caa a2200000 c 4500
001 1841048763
003 DE-627
005 20230706214020.0
007 cr uuu---uuuuu
008 230403s2023 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers15030673  |2 doi 
035 |a (DE-627)1841048763 
035 |a (DE-599)KXP1841048763 
035 |a (OCoLC)1389530976 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Starke, Sebastian  |e VerfasserIn  |0 (DE-588)1228557764  |0 (DE-627)1750399857  |4 aut 
245 1 0 |a Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction  |c Sebastian Starke, Alexander Zwanenburg, Karoline Leger, Klaus Zöphel, Jörg Kotzerke, Mechthild Krause, Michael Baumann, Esther G.C. Troost and Steffen Löck 
264 1 |c 21 January 2023 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.04.2023 
520 |a Radiomics analysis provides a promising avenue towards the enabling of personalized radiotherapy. Most frequently, prognostic radiomics models are based on features extracted from medical images that are acquired before treatment. Here, we investigate whether combining data from multiple timepoints during treatment and from multiple imaging modalities can improve the predictive ability of radiomics models. We extracted radiomics features from computed tomography (CT) images acquired before treatment as well as two and three weeks after the start of radiochemotherapy for 55 patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Additionally, we obtained features from FDG-PET images taken before treatment and three weeks after the start of therapy. Cox proportional hazards models were then built based on features of the different image modalities, treatment timepoints, and combinations thereof using two different feature selection methods in a five-fold cross-validation approach. Based on the cross-validation results, feature signatures were derived and their performance was independently validated. Discrimination regarding loco-regional control was assessed by the concordance index (C-index) and log-rank tests were performed to assess risk stratification. The best prognostic performance was obtained for timepoints during treatment for all modalities. Overall, CT was the best discriminating modality with an independent validation C-index of 0.78 for week two and weeks two and three combined. However, none of these models achieved statistically significant patient stratification. Models based on FDG-PET features from week three provided both satisfactory discrimination (C-index = 0.61 and 0.64) and statistically significant stratification (p=0.044 and p<0.001), but produced highly imbalanced risk groups. After independent validation on larger datasets, the value of (multimodal) radiomics models combining several imaging timepoints should be prospectively assessed for personalized treatment strategies. 
650 4 |a computed tomography 
650 4 |a Cox proportional hazards 
650 4 |a head and neck cancer 
650 4 |a loco-regional control 
650 4 |a longitudinal imaging 
650 4 |a positron emission tomography 
650 4 |a radiomics 
650 4 |a survival analysis 
700 1 |a Zwanenburg, Alexander  |e VerfasserIn  |4 aut 
700 1 |a Leger, Karoline  |e VerfasserIn  |4 aut 
700 1 |a Zöphel, Klaus  |e VerfasserIn  |4 aut 
700 1 |a Kotzerke, Jörg  |e VerfasserIn  |4 aut 
700 1 |a Krause, Mechthild  |e VerfasserIn  |4 aut 
700 1 |a Baumann, Michael  |d 1962-  |e VerfasserIn  |0 (DE-588)131385399  |0 (DE-627)508500222  |0 (DE-576)298443244  |4 aut 
700 1 |a Troost, Esther G. C.  |e VerfasserIn  |4 aut 
700 1 |a Löck, Steffen  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 15(2023), 3 vom: Jan., Artikel-ID 673, Seite 1-15  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction 
773 1 8 |g volume:15  |g year:2023  |g number:3  |g month:01  |g elocationid:673  |g pages:1-15  |g extent:15  |a Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction 
856 4 0 |u https://doi.org/10.3390/cancers15030673  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/15/3/673  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230403 
993 |a Article 
994 |a 2023 
998 |g 131385399  |a Baumann, Michael  |m 131385399:Baumann, Michael  |d 50000  |e 50000PB131385399  |k 0/50000/  |p 7 
999 |a KXP-PPN1841048763  |e 4301207414 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"21 January 2023"}],"id":{"eki":["1841048763"],"doi":["10.3390/cancers15030673"]},"recId":"1841048763","name":{"displayForm":["Sebastian Starke, Alexander Zwanenburg, Karoline Leger, Klaus Zöphel, Jörg Kotzerke, Mechthild Krause, Michael Baumann, Esther G.C. Troost and Steffen Löck"]},"title":[{"title_sort":"Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction","title":"Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction"}],"person":[{"given":"Sebastian","role":"aut","family":"Starke","display":"Starke, Sebastian"},{"family":"Zwanenburg","given":"Alexander","role":"aut","display":"Zwanenburg, Alexander"},{"family":"Leger","given":"Karoline","role":"aut","display":"Leger, Karoline"},{"role":"aut","given":"Klaus","family":"Zöphel","display":"Zöphel, Klaus"},{"display":"Kotzerke, Jörg","family":"Kotzerke","given":"Jörg","role":"aut"},{"display":"Krause, Mechthild","given":"Mechthild","role":"aut","family":"Krause"},{"given":"Michael","role":"aut","family":"Baumann","display":"Baumann, Michael"},{"display":"Troost, Esther G. C.","given":"Esther G. C.","role":"aut","family":"Troost"},{"family":"Löck","given":"Steffen","role":"aut","display":"Löck, Steffen"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"15 S."}],"language":["eng"],"relHost":[{"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"recId":"614095670","disp":"Longitudinal and multimodal radiomics models for head and neck cancer outcome predictionCancers","id":{"eki":["614095670"],"zdb":["2527080-1"],"issn":["2072-6694"]},"origin":[{"dateIssuedDisp":"2009-","publisher":"MDPI","dateIssuedKey":"2009","publisherPlace":"Basel"}],"part":{"text":"15(2023), 3 vom: Jan., Artikel-ID 673, Seite 1-15","extent":"15","pages":"1-15","volume":"15","issue":"3","year":"2023"},"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 27.05.2020"],"pubHistory":["1.2009 -"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"title":[{"title":"Cancers","title_sort":"Cancers"}]}],"note":["Gesehen am 03.04.2023"]} 
SRT |a STARKESEBALONGITUDIN2120