A note on non-simultaneous blow-up for a drift-diffusion model
In this paper, we consider a drift-diffusion model of parabolic-elliptic type, with three coupled equations. We prove that there exist parameter regimes for which non-simultaneous blow-up of solutions happens. This is in contrast to a two-chemotactic species model, coupled to an elliptic equation fo...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2010
|
| In: |
Differential and integral equations
Year: 2010, Jahrgang: 23, Heft: 5/6, Pages: 451-462 |
| ISSN: | 0893-4983 |
| DOI: | 10.57262/die/1356019306 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.57262/die/1356019306 Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/differential-and-integral-equations/volume-23/issue-5_2f_6/A-Note-on-non-simultaneous-blow-up-for-a-drift/die/1356019306.full |
| Verfasserangaben: | E.E. Espejo, A. Stevens, J.J.L. Velázquez |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1842778595 | ||
| 003 | DE-627 | ||
| 005 | 20230710143628.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230417s2010 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.57262/die/1356019306 |2 doi | |
| 035 | |a (DE-627)1842778595 | ||
| 035 | |a (DE-599)KXP1842778595 | ||
| 035 | |a (OCoLC)1389806769 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Espejo Arenas, Elio Eduardo |d 1976- |e VerfasserIn |0 (DE-588)135954681 |0 (DE-627)573398747 |0 (DE-576)283173785 |4 aut | |
| 245 | 1 | 2 | |a A note on non-simultaneous blow-up for a drift-diffusion model |c E.E. Espejo, A. Stevens, J.J.L. Velázquez |
| 264 | 1 | |c 2010 | |
| 300 | |a 12 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Elektronische Reproduktion der Druck-Ausgabe | ||
| 500 | |a Published: May/June 2010, first available in Project Euclid: 20 December 2012 | ||
| 500 | |a Gesehen am 17.04.2023 | ||
| 520 | |a In this paper, we consider a drift-diffusion model of parabolic-elliptic type, with three coupled equations. We prove that there exist parameter regimes for which non-simultaneous blow-up of solutions happens. This is in contrast to a two-chemotactic species model, coupled to an elliptic equation for an attractive chemical produced by the two species, where blow-up of one species implies blow-up of the other one at the same time. Also, we show that the range of parameters of the drift-diffusion model in this paper, for which blow-up happens, is larger than suggested by previous results in the literature. | ||
| 650 | 4 | |a 35B35 | |
| 650 | 4 | |a 35B40 | |
| 650 | 4 | |a 35K15 | |
| 650 | 4 | |a 35K55 | |
| 700 | 1 | |a Stevens, Angela |e VerfasserIn |0 (DE-588)1048631109 |0 (DE-627)78076899X |0 (DE-576)402881915 |4 aut | |
| 700 | 1 | |a Velázquez, J. J. L. |d 1964- |e VerfasserIn |0 (DE-588)1078365024 |0 (DE-627)838429858 |0 (DE-576)450765857 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Differential and integral equations |d Athens, Ohio : Khayyam Publ., 1988 |g 23(2010), 5/6, Seite 451-462 |h Online-Ressource |w (DE-627)327407158 |w (DE-600)2044391-2 |w (DE-576)391398601 |x 0893-4983 |7 nnas |a A note on non-simultaneous blow-up for a drift-diffusion model |
| 773 | 1 | 8 | |g volume:23 |g year:2010 |g number:5/6 |g pages:451-462 |g extent:12 |a A note on non-simultaneous blow-up for a drift-diffusion model |
| 856 | 4 | 0 | |u https://doi.org/10.57262/die/1356019306 |x Verlag |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://projecteuclid.org/journals/differential-and-integral-equations/volume-23/issue-5_2f_6/A-Note-on-non-simultaneous-blow-up-for-a-drift/die/1356019306.full |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230417 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 1048631109 |a Stevens, Angela |m 1048631109:Stevens, Angela |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 716000 |e 110000PS1048631109 |e 110200PS1048631109 |e 110000PS1048631109 |e 110400PS1048631109 |e 700000PS1048631109 |e 716000PS1048631109 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/716000/ |p 2 | ||
| 999 | |a KXP-PPN1842778595 |e 4309139221 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"title":[{"title_sort":"Differential and integral equations","title":"Differential and integral equations"}],"pubHistory":["1.1988 -"],"part":{"year":"2010","pages":"451-462","issue":"5/6","text":"23(2010), 5/6, Seite 451-462","volume":"23","extent":"12"},"note":["Gesehen am 27.09.24","Fortsetzung der Druck-Ausgabe"],"disp":"A note on non-simultaneous blow-up for a drift-diffusion modelDifferential and integral equations","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"327407158","language":["eng"],"origin":[{"dateIssuedDisp":"1988-","dateIssuedKey":"1988","publisher":"Khayyam Publ.","publisherPlace":"Athens, Ohio"}],"id":{"issn":["0893-4983"],"zdb":["2044391-2"],"eki":["327407158"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"12 S."}],"name":{"displayForm":["E.E. Espejo, A. Stevens, J.J.L. Velázquez"]},"id":{"doi":["10.57262/die/1356019306"],"eki":["1842778595"]},"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"2010"}],"recId":"1842778595","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Elektronische Reproduktion der Druck-Ausgabe","Published: May/June 2010, first available in Project Euclid: 20 December 2012","Gesehen am 17.04.2023"],"person":[{"family":"Espejo Arenas","given":"Elio Eduardo","roleDisplay":"VerfasserIn","display":"Espejo Arenas, Elio Eduardo","role":"aut"},{"display":"Stevens, Angela","roleDisplay":"VerfasserIn","role":"aut","family":"Stevens","given":"Angela"},{"given":"J. J. L.","family":"Velázquez","role":"aut","roleDisplay":"VerfasserIn","display":"Velázquez, J. J. L."}],"title":[{"title_sort":"note on non-simultaneous blow-up for a drift-diffusion model","title":"A note on non-simultaneous blow-up for a drift-diffusion model"}]} | ||
| SRT | |a ESPEJOARENNOTEONNONS2010 | ||