Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography

Self-assembled monolayers (SAMs) can serve as versatile resist/template materials for surface engineering and electron beam lithography (EBL), making possible a new type of lateral patterning: chemical lithography (CL). Whereas CL has been well established for aromatic SAMs, it is hardly possible fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Terfort, Andreas (Author) , Zharnikov, Michael (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Advanced materials interfaces
Year: 2021, Volume: 8, Issue: 10, Pages: 1-14
ISSN:2196-7350
DOI:10.1002/admi.202100148
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/admi.202100148
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.202100148
Get full text
Author Notes:Andreas Terfort and Michael Zharnikov

MARC

LEADER 00000caa a2200000 c 4500
001 1842940503
003 DE-627
005 20230707005520.0
007 cr uuu---uuuuu
008 230417s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/admi.202100148  |2 doi 
035 |a (DE-627)1842940503 
035 |a (DE-599)KXP1842940503 
035 |a (OCoLC)1389537905 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Terfort, Andreas  |e VerfasserIn  |0 (DE-588)172812232  |0 (DE-627)697742482  |0 (DE-576)133668460  |4 aut 
245 1 0 |a Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography  |c Andreas Terfort and Michael Zharnikov 
264 1 |c 2021 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.04.2023 
520 |a Self-assembled monolayers (SAMs) can serve as versatile resist/template materials for surface engineering and electron beam lithography (EBL), making possible a new type of lateral patterning: chemical lithography (CL). Whereas CL has been well established for aromatic SAMs, it is hardly possible for aliphatic monolayers, because of extensive irradiation-induced damage excluding selective modification of specific chemical groups. Turning this drawback into an advantage, the irradiation-promoted exchange reaction approach is developed, which is described in detail in the present review. The key idea of the approach is tuning the extent of the exchange reaction between a primary aliphatic SAM covering the substrate and a potential molecular substituent, which is capable of building a SAM on the same support, by electron irradiation. The major advantages of the approach are low irradiation doses (≤1 mC cm−2) and flexible choice of SAM-forming molecules, with a broad pool available commercially. Consequently, a large variety of binary SAMs with controlled compositions can be prepared and, in combination with EBL, complex chemical patterns can be fabricated, serving in particular as templates for subsequent area-selective chemical reactions, surface-initiated polymerization, attachment of nanoparticles, non-specific and specific proteins adsorption, and growth of 3D DNA nanostructures. 
650 4 |a biorepulsive surfaces 
650 4 |a electron beam lithography 
650 4 |a nanoparticles 
650 4 |a polymer brushes 
650 4 |a self-assembled monolayers 
650 4 |a single-strand DNA 
650 4 |a specific protein adsorption 
700 1 |a Zharnikov, Michael  |e VerfasserIn  |0 (DE-588)1118537629  |0 (DE-627)872019810  |0 (DE-576)479525889  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials interfaces  |d Weinheim : Wiley-VCH, 2014  |g 8(2021), 10, Artikel-ID 2100148, Seite 1-14  |h Online-Ressource  |w (DE-627)776074776  |w (DE-600)2750376-8  |w (DE-576)399754199  |x 2196-7350  |7 nnas  |a Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography 
773 1 8 |g volume:8  |g year:2021  |g number:10  |g elocationid:2100148  |g pages:1-14  |g extent:14  |a Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography 
856 4 0 |u https://doi.org/10.1002/admi.202100148  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.202100148  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230417 
993 |a Article 
994 |a 2021 
998 |g 1118537629  |a Zharnikov, Michael  |m 1118537629:Zharnikov, Michael  |d 120000  |d 120300  |e 120000PZ1118537629  |e 120300PZ1118537629  |k 0/120000/  |k 1/120000/120300/  |p 2  |y j 
999 |a KXP-PPN1842940503  |e 4309380263 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"14 S."}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"display":"Terfort, Andreas","role":"aut","given":"Andreas","family":"Terfort"},{"given":"Michael","role":"aut","family":"Zharnikov","display":"Zharnikov, Michael"}],"title":[{"title_sort":"Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography","title":"Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithography"}],"name":{"displayForm":["Andreas Terfort and Michael Zharnikov"]},"recId":"1842940503","id":{"doi":["10.1002/admi.202100148"],"eki":["1842940503"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"note":["Gesehen am 17.04.2023"],"relHost":[{"id":{"eki":["776074776"],"zdb":["2750376-8"],"issn":["2196-7350"],"doi":["10.1002/(ISSN)2196-7350"]},"origin":[{"dateIssuedDisp":"2014-","publisher":"Wiley-VCH","dateIssuedKey":"2014","publisherPlace":"Weinheim"}],"part":{"year":"2021","issue":"10","pages":"1-14","volume":"8","text":"8(2021), 10, Artikel-ID 2100148, Seite 1-14","extent":"14"},"recId":"776074776","disp":"Electron-irradiation promoted exchange reaction as a tool for surface engineering and chemical lithographyAdvanced materials interfaces","title":[{"title_sort":"Advanced materials interfaces","title":"Advanced materials interfaces"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 06.02.2023"],"pubHistory":["1.2014 -"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a TERFORTANDELECTRONIR2021