Resource bounded randomness and weakly complete problems
We introduce and study resource bounded random sets based on Lutz's concept of resource bounded measure [7, 8]. We concentrate on nc-randomness (c ⩾ 2) which corresponds to the polynomial time bounded (p-) measure of Lutz, and which is adequate for studying the internal and quantitative structu...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
1997
|
| In: |
Theoretical computer science
Year: 1997, Volume: 172, Issue: 1, Pages: 195-207 |
| ISSN: | 1879-2294 |
| DOI: | 10.1016/S0304-3975(95)00260-X |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S0304-3975(95)00260-X Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S030439759500260X |
| Author Notes: | Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 184294181X | ||
| 003 | DE-627 | ||
| 005 | 20230710175502.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230417s1997 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/S0304-3975(95)00260-X |2 doi | |
| 035 | |a (DE-627)184294181X | ||
| 035 | |a (DE-599)KXP184294181X | ||
| 035 | |a (OCoLC)1389825964 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ambos-Spies, Klaus |d 1951- |e VerfasserIn |0 (DE-588)141551607 |0 (DE-627)629951861 |0 (DE-576)16006810X |4 aut | |
| 245 | 1 | 0 | |a Resource bounded randomness and weakly complete problems |c Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong |
| 264 | 1 | |c 1997 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Elektronische Reproduktion der Druck-Ausgabe 9. November 1999 | ||
| 500 | |a Gesehen am 17.04.2023 | ||
| 520 | |a We introduce and study resource bounded random sets based on Lutz's concept of resource bounded measure [7, 8]. We concentrate on nc-randomness (c ⩾ 2) which corresponds to the polynomial time bounded (p-) measure of Lutz, and which is adequate for studying the internal and quantitative structure of E = DTIME(2lin). However, we will also comment on E2 = DTIME(2pol) and its corresponding (p2-) measure. First we show that the class of nc-random sets has p-measure 1. This provides a new, simplified approach to p-measure 1-results. Next we compare randomness with genericity (in the sense of [2, 3]) and we show that nc + 1-random sets are nc-generic, whereas the converse fails. From the former we conclude that nc-random sets are not p-btt-complete for E. Our technical main results describe the distribution of the nc-random sets under p-m-reducibility. We show that every nc-random set in E has nκ-random predecessors in E for any k ⩾ 1, whereas the amount of randomness of the successors is bounded. We apply this result to answer a question raised by Lutz [10]: We show that the class of weakly complete sets has measure 1 in E and that there are weakly complete problems which are not p-btt-complete for E. | ||
| 700 | 1 | |a Terwijn, Sebastiaan A. |e VerfasserIn |0 (DE-588)140769552 |0 (DE-627)703782266 |0 (DE-576)320698742 |4 aut | |
| 700 | 1 | |a Zheng, Xizhong |e VerfasserIn |0 (DE-588)1286451906 |0 (DE-627)1843052164 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Theoretical computer science |d Amsterdam [u.a.] : Elsevier, 1975 |g 172(1997), 1, Seite 195-207 |h Online-Ressource |w (DE-627)265784174 |w (DE-600)1466347-8 |w (DE-576)074891030 |x 1879-2294 |7 nnas |a Resource bounded randomness and weakly complete problems |
| 773 | 1 | 8 | |g volume:172 |g year:1997 |g number:1 |g pages:195-207 |g extent:13 |a Resource bounded randomness and weakly complete problems |
| 856 | 4 | 0 | |u https://doi.org/10.1016/S0304-3975(95)00260-X |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S030439759500260X |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230417 | ||
| 993 | |a Article | ||
| 994 | |a 1997 | ||
| 998 | |g 141551607 |a Ambos-Spies, Klaus |m 141551607:Ambos-Spies, Klaus |d 110000 |d 110300 |e 110000PA141551607 |e 110300PA141551607 |k 0/110000/ |k 1/110000/110300/ |p 1 |x j | ||
| 999 | |a KXP-PPN184294181X |e 4309384579 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Resource bounded randomness and weakly complete problems","title_sort":"Resource bounded randomness and weakly complete problems"}],"person":[{"given":"Klaus","family":"Ambos-Spies","role":"aut","roleDisplay":"VerfasserIn","display":"Ambos-Spies, Klaus"},{"given":"Sebastiaan A.","family":"Terwijn","role":"aut","roleDisplay":"VerfasserIn","display":"Terwijn, Sebastiaan A."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Zheng, Xizhong","given":"Xizhong","family":"Zheng"}],"language":["eng"],"recId":"184294181X","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Elektronische Reproduktion der Druck-Ausgabe 9. November 1999","Gesehen am 17.04.2023"],"id":{"doi":["10.1016/S0304-3975(95)00260-X"],"eki":["184294181X"]},"origin":[{"dateIssuedDisp":"1997","dateIssuedKey":"1997"}],"name":{"displayForm":["Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong"]},"relHost":[{"origin":[{"publisher":"Elsevier","dateIssuedKey":"1975","dateIssuedDisp":"1975-","publisherPlace":"Amsterdam [u.a.]"}],"id":{"eki":["265784174"],"zdb":["1466347-8"],"issn":["1879-2294"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Theoretical computer science","title":"Theoretical computer science","subtitle":"the journal of the EATCS"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 12.04.23"],"disp":"Resource bounded randomness and weakly complete problemsTheoretical computer science","language":["eng"],"recId":"265784174","pubHistory":["1.1975/76 - 412.2011; Vol. 413.2012 -"],"part":{"pages":"195-207","issue":"1","year":"1997","extent":"13","text":"172(1997), 1, Seite 195-207","volume":"172"}}],"physDesc":[{"extent":"13 S."}]} | ||
| SRT | |a AMBOSSPIESRESOURCEBO1997 | ||