Genericity and measure for exponential time

Recently, Lutz [14, 15] introduced a polynomial time bounded version of Lebesgue measure. He and others (see e.g. [11, 13-18, 20]) used this concept to investigate the quantitative structure of Exponential Time (E = DTIME(2lin)). Previously, Ambos-Spies et al. [2, 3] introduced polynomial time bound...

Full description

Saved in:
Bibliographic Details
Main Authors: Ambos-Spies, Klaus (Author) , Neis, Hans-Christian (Author) , Terwijn, Sebastiaan A. (Author)
Format: Article (Journal)
Language:English
Published: 10 November 1996
In: Theoretical computer science
Year: 1996, Volume: 168, Issue: 1, Pages: 3-19
ISSN:1879-2294
DOI:10.1016/0304-3975(96)89424-2
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/0304-3975(96)89424-2
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/0304397596894242
Get full text
Author Notes:Klaus Ambos-Spies, Hans-Christian Neis, Sebastiaan A. Terwijn
Search Result 1

Genericity and measure for exponential time by Ambos-Spies, Klaus (Author) , Neis, Hans-Christian (Author) , Terwijn, Sebastiaan A. (Author) ,


Get full text
Chapter/Article Conference Paper Online Resource