On the geometry of forms on supermanifolds

This paper provides a rigorous account on the geometry of forms on supermanifolds, with a focus on its algebraic-geometric aspects. First, we introduce the de Rham complex of differential forms and we compute its cohomology. We then discuss three intrinsic definitions of the Berezinian sheaf of a su...

Full description

Saved in:
Bibliographic Details
Main Author: Noja, Simone (Author)
Format: Article (Journal)
Language:English
Published: 20 March 2023
In: Differential geometry and its applications
Year: 2023, Volume: 88, Pages: 1-71
DOI:10.1016/j.difgeo.2023.101999
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.difgeo.2023.101999
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0926224523000256
Get full text
Author Notes:Simone Noja

MARC

LEADER 00000caa a2200000 c 4500
001 1843142449
003 DE-627
005 20230706212850.0
007 cr uuu---uuuuu
008 230419s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.difgeo.2023.101999  |2 doi 
035 |a (DE-627)1843142449 
035 |a (DE-599)KXP1843142449 
035 |a (OCoLC)1389530629 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Noja, Simone  |e VerfasserIn  |0 (DE-588)1234615118  |0 (DE-627)175947486X  |4 aut 
245 1 0 |a On the geometry of forms on supermanifolds  |c Simone Noja 
264 1 |c 20 March 2023 
300 |a 71 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.04.2023 
520 |a This paper provides a rigorous account on the geometry of forms on supermanifolds, with a focus on its algebraic-geometric aspects. First, we introduce the de Rham complex of differential forms and we compute its cohomology. We then discuss three intrinsic definitions of the Berezinian sheaf of a supermanifold - as a quotient sheaf, via cohomology of the super Koszul complex or via cohomology of the total de Rham complex. Further, we study the properties of the Berezinian sheaf, showing in particular that it defines a right D-module. Then we introduce integral forms and their complex and we compute their cohomology, by providing a suitable Poincaré lemma. We show that the complexes of differential forms and integral forms are quasi-isomorphic and their cohomology computes the de Rham cohomology of the reduced space of the supermanifold. The notion of Berezin integral is then introduced and put to good use to prove the superanalog of Stokes' theorem and Poincaré duality, which relates differential and integral forms on supermanifolds. Finally, a different point of view is discussed by introducing the total tangent supermanifold and (integrable) pseudoforms in a new way. In this context, it is shown that a particular class of integrable pseudoforms having a distributional dependence supported at a point on the fibers are isomorphic to integral forms. Within the general overview, several new proofs of results are scattered. 
650 4 |a Berezinian sheaf 
650 4 |a Differential and integral forms 
650 4 |a Integration on supermanifolds 
650 4 |a Supermanifolds 
773 0 8 |i Enthalten in  |t Differential geometry and its applications  |d Amsterdam [u.a.] : Elsevier Science Publ., 1991  |g 88(2023) vom: März, Artikel-ID 101999, Seite 1-71  |h Online-Ressource  |w (DE-627)26578445X  |w (DE-600)1466376-4  |w (DE-576)074891103  |7 nnas  |a On the geometry of forms on supermanifolds 
773 1 8 |g volume:88  |g year:2023  |g month:03  |g elocationid:101999  |g pages:1-71  |g extent:71  |a On the geometry of forms on supermanifolds 
856 4 0 |u https://doi.org/10.1016/j.difgeo.2023.101999  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0926224523000256  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230419 
993 |a Article 
994 |a 2023 
998 |g 1234615118  |a Noja, Simone  |m 1234615118:Noja, Simone  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PN1234615118  |e 110100PN1234615118  |e 110000PN1234615118  |e 110400PN1234615118  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1843142449  |e 4311233779 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Simone","family":"Noja","role":"aut","display":"Noja, Simone","roleDisplay":"VerfasserIn"}],"title":[{"title":"On the geometry of forms on supermanifolds","title_sort":"On the geometry of forms on supermanifolds"}],"language":["eng"],"recId":"1843142449","note":["Gesehen am 19.04.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Simone Noja"]},"id":{"doi":["10.1016/j.difgeo.2023.101999"],"eki":["1843142449"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"20 March 2023"}],"relHost":[{"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Elsevier Science Publ."}],"id":{"zdb":["1466376-4"],"eki":["26578445X"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Differential geometry and its applications","title":"Differential geometry and its applications"}],"pubHistory":["1.1991 - 31.2013; Vol. 32.2014 -"],"part":{"pages":"1-71","year":"2023","extent":"71","text":"88(2023) vom: März, Artikel-ID 101999, Seite 1-71","volume":"88"},"disp":"On the geometry of forms on supermanifoldsDifferential geometry and its applications","note":["Gesehen am 15.05.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"26578445X"}],"physDesc":[{"extent":"71 S."}]} 
SRT |a NOJASIMONEONTHEGEOME2020