Nonparametric regression in nonstandard spaces

A nonparametric regression setting is considered with a real-valued covariate and responses from a metric space. One may approach this setting via Fréchet regression, where the value of the regression function at each point is estimated via a Fréchet mean calculated from an estimated objective fun...

Full description

Saved in:
Bibliographic Details
Main Author: Schötz, Christof (Author)
Format: Article (Journal)
Language:English
Published: 27 September 2022
In: Electronic journal of statistics
Year: 2022, Volume: 16, Issue: 2, Pages: 4679-4741
ISSN:1935-7524
DOI:10.1214/22-EJS2056
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1214/22-EJS2056
Verlag, lizenzpflichtig, Volltext: https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-16/issue-2/Nonparametric-regression-in-nonstandard-spaces/10.1214/22-EJS2056.full
Get full text
Author Notes:Christof Schötz

MARC

LEADER 00000caa a2200000 c 4500
001 1843143003
003 DE-627
005 20230706224518.0
007 cr uuu---uuuuu
008 230419s2022 xx |||||o 00| ||eng c
024 7 |a 10.1214/22-EJS2056  |2 doi 
035 |a (DE-627)1843143003 
035 |a (DE-599)KXP1843143003 
035 |a (OCoLC)1389533973 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Schötz, Christof  |d 1991-  |e VerfasserIn  |0 (DE-588)1160782393  |0 (DE-627)1024205932  |0 (DE-576)506187152  |4 aut 
245 1 0 |a Nonparametric regression in nonstandard spaces  |c Christof Schötz 
264 1 |c 27 September 2022 
300 |a 63 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.04.2023 
520 |a A nonparametric regression setting is considered with a real-valued covariate and responses from a metric space. One may approach this setting via Fréchet regression, where the value of the regression function at each point is estimated via a Fréchet mean calculated from an estimated objective function. A second approach is geodesic regression, which builds upon fitting geodesics to observations by a least squares method. These approaches are applied to transform two of the most important nonparametric regression estimators in statistics to the metric setting - the local linear regression estimator and the orthogonal series projection estimator. The resulting procedures consist of known estimators as well as new methods. We investigate their rates of convergence in a general setting and compare their performance in a simulation study on the sphere. 
650 4 |a 62G08 
650 4 |a 62R20 
650 4 |a Fréchet mean 
650 4 |a Fréchet regression 
650 4 |a geodesic regression 
650 4 |a metric space 
650 4 |a Nonparametric regression 
773 0 8 |i Enthalten in  |t Electronic journal of statistics  |d Ithaca, NY : Cornell University Library, 2007  |g 16(2022), 2 vom: Sept., Seite 4679-4741  |h Online-Ressource  |w (DE-627)538998830  |w (DE-600)2381001-4  |w (DE-576)28134714X  |x 1935-7524  |7 nnas  |a Nonparametric regression in nonstandard spaces 
773 1 8 |g volume:16  |g year:2022  |g number:2  |g month:09  |g pages:4679-4741  |g extent:63  |a Nonparametric regression in nonstandard spaces 
856 4 0 |u https://doi.org/10.1214/22-EJS2056  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-16/issue-2/Nonparametric-regression-in-nonstandard-spaces/10.1214/22-EJS2056.full  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230419 
993 |a Article 
994 |a 2022 
998 |g 1160782393  |a Schötz, Christof  |m 1160782393:Schötz, Christof  |p 1  |x j  |y j 
999 |a KXP-PPN1843143003  |e 4311234783 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 19.04.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1843143003","language":["eng"],"person":[{"given":"Christof","family":"Schötz","role":"aut","display":"Schötz, Christof","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Nonparametric regression in nonstandard spaces","title":"Nonparametric regression in nonstandard spaces"}],"physDesc":[{"extent":"63 S."}],"relHost":[{"pubHistory":["1.2007 -"],"titleAlt":[{"title":"EJS"}],"part":{"extent":"63","text":"16(2022), 2 vom: Sept., Seite 4679-4741","volume":"16","issue":"2","pages":"4679-4741","year":"2022"},"disp":"Nonparametric regression in nonstandard spacesElectronic journal of statistics","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"538998830","language":["eng"],"title":[{"title_sort":"Electronic journal of statistics","title":"Electronic journal of statistics","subtitle":"EJS"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY","dateIssuedKey":"2007","publisher":"Cornell University Library","dateIssuedDisp":"2007-"}],"id":{"issn":["1935-7524"],"zdb":["2381001-4"],"eki":["538998830"]}}],"name":{"displayForm":["Christof Schötz"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"27 September 2022"}],"id":{"eki":["1843143003"],"doi":["10.1214/22-EJS2056"]}} 
SRT |a SCHOETZCHRNONPARAMET2720