QMeS-derivation: Mathematica package for the symbolic derivation of functional equations

We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pawlowski, Jan M. (VerfasserIn) , Schneider, Coralie Sophie (VerfasserIn) , Wink, Nicolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 March 2023
In: Computer physics communications
Year: 2023, Jahrgang: 287, Pages: 1-21
ISSN:1879-2944
DOI:10.1016/j.cpc.2023.108711
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cpc.2023.108711
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0010465523000565
Volltext
Verfasserangaben:Jan M. Pawlowski, Coralie S. Schneider, Nicolas Wink

MARC

LEADER 00000caa a2200000 c 4500
001 1843265117
003 DE-627
005 20230706212650.0
007 cr uuu---uuuuu
008 230420s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cpc.2023.108711  |2 doi 
035 |a (DE-627)1843265117 
035 |a (DE-599)KXP1843265117 
035 |a (OCoLC)1389530695 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Pawlowski, Jan M.  |d 1965-  |e VerfasserIn  |0 (DE-588)1047077388  |0 (DE-627)777525925  |0 (DE-576)400331381  |4 aut 
245 1 0 |a QMeS-derivation  |b Mathematica package for the symbolic derivation of functional equations  |c Jan M. Pawlowski, Coralie S. Schneider, Nicolas Wink 
264 1 |c 14 March 2023 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar 2. März 2023, Artikelversion 14. März 2023 
500 |a Gesehen am 20.04.2023 
520 |a We present the Mathematica package QMeS-Derivation, available on GitHub. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples. - Program summary - Program Title: QMeS-Derivation CPC Library link to program files: https://doi.org/10.17632/dzb2z4tshd.1 Developer's repository link: https://github.com/QMeS-toolbox/QMeS-Derivation Licensing provisions: GPLv3 Programming language: Mathematica Nature of problem: Deriving symbolic functional equations starting from a quantum master equation. Solution method: Taking functional derivatives of the modified Slavnov-Taylor identities, the Dyson-Schwinger, functional renormalisation group equation or user defined master equations, taking the trace in field space and applying a truncation, doing a momentum routing for one-loop diagrams. Additional comments including restrictions and unusual features: QMeS operates theory independent and is based on a small number of rules, i.e. the (anti-)commutation relation of (fermions)bosons and general functional derivative rules. 
650 4 |a Correlation functions 
650 4 |a Dyson-Schwinger equations 
650 4 |a Functional equations 
650 4 |a Functional renormalization group 
650 4 |a Mathematica 
650 4 |a Modified Slavnov-Taylor identities 
650 4 |a Quantum field theory 
700 1 |a Schneider, Coralie Sophie  |d 1995-  |e VerfasserIn  |0 (DE-588)1197711287  |0 (DE-627)1679443933  |4 aut 
700 1 |a Wink, Nicolas  |d 1994-  |e VerfasserIn  |0 (DE-588)1153918382  |0 (DE-627)1015518893  |0 (DE-576)500627967  |4 aut 
773 0 8 |i Enthalten in  |t Computer physics communications  |d [Amsterdam] : Elsevier B.V., 1969  |g 287(2023) vom: März, Artikel-ID 108711, Seite 1-21  |h Online-Ressource  |w (DE-627)266014453  |w (DE-600)1466511-6  |w (DE-576)074959662  |x 1879-2944  |7 nnas  |a QMeS-derivation Mathematica package for the symbolic derivation of functional equations 
773 1 8 |g volume:287  |g year:2023  |g month:03  |g elocationid:108711  |g pages:1-21  |g extent:21  |a QMeS-derivation Mathematica package for the symbolic derivation of functional equations 
856 4 0 |u https://doi.org/10.1016/j.cpc.2023.108711  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0010465523000565  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230420 
993 |a Article 
994 |a 2023 
998 |g 1153918382  |a Wink, Nicolas  |m 1153918382:Wink, Nicolas  |p 3  |y j 
998 |g 1197711287  |a Schneider, Coralie Sophie  |m 1197711287:Schneider, Coralie Sophie  |p 2 
998 |g 1047077388  |a Pawlowski, Jan M.  |m 1047077388:Pawlowski, Jan M.  |d 130000  |d 130300  |e 130000PP1047077388  |e 130300PP1047077388  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1843265117  |e 4311562985 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1843265117"],"doi":["10.1016/j.cpc.2023.108711"]},"recId":"1843265117","type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Jan M. Pawlowski, Coralie S. Schneider, Nicolas Wink"]},"language":["eng"],"physDesc":[{"extent":"21 S."}],"relHost":[{"part":{"pages":"1-21","text":"287(2023) vom: März, Artikel-ID 108711, Seite 1-21","extent":"21","volume":"287","year":"2023"},"title":[{"title_sort":"Computer physics communications","title":"Computer physics communications","subtitle":"an international journal for computational physics and physical chemistry"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"QMeS-derivation Mathematica package for the symbolic derivation of functional equationsComputer physics communications","language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"[Amsterdam] ; Amsterdam","dateIssuedKey":"1969","dateIssuedDisp":"1969-","publisher":"Elsevier B.V. ; North Holland Publ. Co."}],"note":["Gesehen am 31.03.25"],"id":{"issn":["1879-2944"],"eki":["266014453"],"zdb":["1466511-6"]},"pubHistory":["1.1969/70 - 185.2014; Vol. 186.2015 -"],"recId":"266014453"}],"person":[{"given":"Jan M.","family":"Pawlowski","role":"aut","display":"Pawlowski, Jan M."},{"family":"Schneider","given":"Coralie Sophie","display":"Schneider, Coralie Sophie","role":"aut"},{"family":"Wink","given":"Nicolas","display":"Wink, Nicolas","role":"aut"}],"title":[{"title_sort":"QMeS-derivation","title":"QMeS-derivation","subtitle":"Mathematica package for the symbolic derivation of functional equations"}],"origin":[{"dateIssuedDisp":"14 March 2023","dateIssuedKey":"2023"}],"note":["Online verfügbar 2. März 2023, Artikelversion 14. März 2023","Gesehen am 20.04.2023"]} 
SRT |a PAWLOWSKIJQMESDERIVA1420