On scaling properties for two-state problems and for a aingularly perturbed T3 structure

In this article we study quantitative rigidity properties for the compatible and incompatible two-state problems for suitable classes of A-free differential inclusions and for a singularly perturbed T3 structure for the divergence operator. In particular, in the compatible setting of the two-state p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raiƫă, Bogdan (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Tissot, Camillo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 March 2023
In: Acta applicandae mathematicae
Year: 2023, Jahrgang: 184, Pages: 1-50
ISSN:1572-9036
DOI:10.1007/s10440-023-00557-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10440-023-00557-7
Volltext
Verfasserangaben:Bogdan Raiţă, Angkana Rüland, Camillo Tissot

MARC

LEADER 00000caa a2200000 c 4500
001 1843406799
003 DE-627
005 20240115141753.0
007 cr uuu---uuuuu
008 230424s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10440-023-00557-7  |2 doi 
035 |a (DE-627)1843406799 
035 |a (DE-599)KXP1843406799 
035 |a (OCoLC)1389530491 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Raiƫă, Bogdan  |e VerfasserIn  |0 (DE-588)1286814456  |0 (DE-627)1843408503  |4 aut 
245 1 0 |a On scaling properties for two-state problems and for a aingularly perturbed T3 structure  |c Bogdan Raiţă, Angkana Rüland, Camillo Tissot 
246 3 3 |a On scaling properties for two-state problems and for a aingularly perturbed T 3 structure 
264 1 |c 17 March 2023 
300 |a 50 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist die Zahl 3 tiefgestellt 
500 |a Gesehen am 24.04.2023 
520 |a In this article we study quantitative rigidity properties for the compatible and incompatible two-state problems for suitable classes of A-free differential inclusions and for a singularly perturbed T3 structure for the divergence operator. In particular, in the compatible setting of the two-state problem we prove that all homogeneous, first order, linear operators with affine boundary data which enforce oscillations yield the typical ϵ23-lower scaling bounds. As observed in Chan and Conti (Math. Models Methods Appl. Sci. 25(06):1091–1124, 2015) for higher order operators this may no longer be the case. Revisiting the example from Chan and Conti (Math. Models Methods Appl. Sci. 25(06):1091–1124, 2015), we show that this is reflected in the structure of the associated symbols and that this can be exploited for a new Fourier based proof of the lower scaling bound. Moreover, building on Rüland and Tribuzio (Arch. Ration. Mech. Anal. 243(1):401–431, 2022); Garroni and Nesi (Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2046):1789–1806, 2004, https://doi.org/10.1098/rspa.2003.1249 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] ); Palombaro and Ponsiglione (Asymptot. Anal. 40(1):37–49, 2004), we discuss the scaling behavior of a T3 structure for the divergence operator. We prove that as in Rüland and Tribuzio (Arch. Ration. Mech. Anal. 243(1):401–431, 2022) this yields a non-algebraic scaling law. 
650 4 |a 35F05 
650 4 |a 35Q74 
650 4 |a 74G99 
650 4 |a 74N05 
650 4 |a AA-Free inclusions 
650 4 |a Divergence T3T3 
650 4 |a Phase transformation 
650 4 |a Two-well problem 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Tissot, Camillo  |e VerfasserIn  |0 (DE-588)1286812224  |0 (DE-627)1843407361  |4 aut 
773 0 8 |i Enthalten in  |t Acta applicandae mathematicae  |d [Erscheinungsort nicht ermittelbar] : Proquest, 1983  |g 184(2023) vom: März, Artikel-ID 5, Seite 1-50  |h Online-Ressource  |w (DE-627)271176105  |w (DE-600)1479016-6  |w (DE-576)107585979  |x 1572-9036  |7 nnas  |a On scaling properties for two-state problems and for a aingularly perturbed T3 structure 
773 1 8 |g volume:184  |g year:2023  |g month:03  |g elocationid:5  |g pages:1-50  |g extent:50  |a On scaling properties for two-state problems and for a aingularly perturbed T3 structure 
856 4 0 |u https://doi.org/10.1007/s10440-023-00557-7  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230424 
993 |a Article 
994 |a 2023 
998 |g 1286812224  |a Tissot, Camillo  |m 1286812224:Tissot, Camillo  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PT1286812224  |e 110200PT1286812224  |e 110000PT1286812224  |e 110400PT1286812224  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2 
999 |a KXP-PPN1843406799  |e 4312909784 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"On scaling properties for two-state problems and for a aingularly perturbed T3 structure","title_sort":"On scaling properties for two-state problems and for a aingularly perturbed T3 structure"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Raiƫă, Bogdan","given":"Bogdan","family":"Raiƫă"},{"roleDisplay":"VerfasserIn","display":"Rüland, Angkana","role":"aut","family":"Rüland","given":"Angkana"},{"role":"aut","display":"Tissot, Camillo","roleDisplay":"VerfasserIn","given":"Camillo","family":"Tissot"}],"titleAlt":[{"title":"On scaling properties for two-state problems and for a aingularly perturbed T 3 structure"}],"recId":"1843406799","language":["eng"],"note":["Im Titel ist die Zahl 3 tiefgestellt","Gesehen am 24.04.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1843406799"],"doi":["10.1007/s10440-023-00557-7"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"17 March 2023"}],"name":{"displayForm":["Bogdan Raiţă, Angkana Rüland, Camillo Tissot"]},"relHost":[{"title":[{"title":"Acta applicandae mathematicae","subtitle":"an international survey journal on applying mathematics and mathematical applications","title_sort":"Acta applicandae mathematicae"}],"pubHistory":["1.1983 -"],"part":{"pages":"1-50","year":"2023","extent":"50","text":"184(2023) vom: März, Artikel-ID 5, Seite 1-50","volume":"184"},"note":["Gesehen am 06.12.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"On scaling properties for two-state problems and for a aingularly perturbed T3 structureActa applicandae mathematicae","recId":"271176105","language":["eng"],"origin":[{"dateIssuedDisp":"1983-","publisher":"Proquest ; Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1983","publisherPlace":"[Erscheinungsort nicht ermittelbar] ; Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"zdb":["1479016-6"],"eki":["271176105"],"issn":["1572-9036"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"50 S."}]} 
SRT |a RAIABOGDANONSCALINGP1720