MR-class: a python tool for brain MR image classification utilizing one-vs-All DCNNs to deal with the open-set recognition problem

Background: MR image classification in datasets collected from multiple sources is complicated by inconsistent and missing DICOM metadata. Therefore, we aimed to establish a method for the efficient automatic classification of MR brain sequences. Methods: Deep convolutional neural networks (DCNN) we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salome, Patrick (VerfasserIn) , Sforazzini, Francesco (VerfasserIn) , Brugnara, Gianluca (VerfasserIn) , Kudak, Andreas (VerfasserIn) , Dostal, Matthias (VerfasserIn) , Herold-Mende, Christel (VerfasserIn) , Heiland, Sabine (VerfasserIn) , Debus, Jürgen (VerfasserIn) , Abdollahi, Amir (VerfasserIn) , Knoll, Maximilian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 March 2023
In: Cancers
Year: 2023, Jahrgang: 15, Heft: 6, Pages: 1-16
ISSN:2072-6694
DOI:10.3390/cancers15061820
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/cancers15061820
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-6694/15/6/1820
Volltext
Verfasserangaben:Patrick Salome, Francesco Sforazzini, Gianluca Brugnara, Andreas Kudak, Matthias Dostal, Christel Herold-Mende, Sabine Heiland, Jürgen Debus, Amir Abdollahi and Maximilian Knoll

MARC

LEADER 00000caa a2200000 c 4500
001 1843494957
003 DE-627
005 20230706212100.0
007 cr uuu---uuuuu
008 230425s2023 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers15061820  |2 doi 
035 |a (DE-627)1843494957 
035 |a (DE-599)KXP1843494957 
035 |a (OCoLC)1389530272 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Salome, Patrick  |d 1991-  |e VerfasserIn  |0 (DE-588)1283872439  |0 (DE-627)1839574720  |4 aut 
245 1 0 |a MR-class  |b a python tool for brain MR image classification utilizing one-vs-All DCNNs to deal with the open-set recognition problem  |c Patrick Salome, Francesco Sforazzini, Gianluca Brugnara, Andreas Kudak, Matthias Dostal, Christel Herold-Mende, Sabine Heiland, Jürgen Debus, Amir Abdollahi and Maximilian Knoll 
264 1 |c 17 March 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.04.2023 
520 |a Background: MR image classification in datasets collected from multiple sources is complicated by inconsistent and missing DICOM metadata. Therefore, we aimed to establish a method for the efficient automatic classification of MR brain sequences. Methods: Deep convolutional neural networks (DCNN) were trained as one-vs-all classifiers to differentiate between six classes: T1 weighted (w), contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, and SWI. Each classifier yields a probability, allowing threshold-based and relative probability assignment while excluding images with low probability (label: unknown, open-set recognition problem). Data from three high-grade glioma (HGG) cohorts was assessed; C1 (320 patients, 20,101 MRI images) was used for training, while C2 (197, 11,333) and C3 (256, 3522) were for testing. Two raters manually checked images through an interactive labeling tool. Finally, MR-Class’ added value was evaluated via radiomics model performance for progression-free survival (PFS) prediction in C2, utilizing the concordance index (C-I). Results: Approximately 10% of annotation errors were observed in each cohort between the DICOM series descriptions and the derived labels. MR-Class accuracy was 96.7% [95% Cl: 95.8, 97.3] for C2 and 94.4% [93.6, 96.1] for C3. A total of 620 images were misclassified; manual assessment of those frequently showed motion artifacts or alterations of anatomy by large tumors. Implementation of MR-Class increased the PFS model C-I by 14.6% on average, compared to a model trained without MR-Class. Conclusions: We provide a DCNN-based method for the sequence classification of brain MR images and demonstrate its usability in two independent HGG datasets. 
650 4 |a artificial intelligence (AI) 
650 4 |a content-based image classification 
650 4 |a convolutional neural networks (CNN) 
650 4 |a data curation and preparation 
650 4 |a deep learning 
700 1 |a Sforazzini, Francesco  |e VerfasserIn  |4 aut 
700 1 |a Brugnara, Gianluca  |e VerfasserIn  |0 (DE-588)1197163123  |0 (DE-627)1678969850  |4 aut 
700 1 |a Kudak, Andreas  |e VerfasserIn  |0 (DE-588)1223468003  |0 (DE-627)174282773X  |4 aut 
700 1 |a Dostal, Matthias  |e VerfasserIn  |4 aut 
700 1 |a Herold-Mende, Christel  |e VerfasserIn  |0 (DE-588)1022936549  |0 (DE-627)717335577  |0 (DE-576)366194267  |4 aut 
700 1 |a Heiland, Sabine  |e VerfasserIn  |0 (DE-588)106732626X  |0 (DE-627)818624450  |0 (DE-576)426561368  |4 aut 
700 1 |a Debus, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1022671421  |0 (DE-627)717025780  |0 (DE-576)365774944  |4 aut 
700 1 |a Abdollahi, Amir  |e VerfasserIn  |0 (DE-588)129612715  |0 (DE-627)474757765  |0 (DE-576)297748874  |4 aut 
700 1 |a Knoll, Maximilian  |d 1988-  |e VerfasserIn  |0 (DE-588)1140661949  |0 (DE-627)898631998  |0 (DE-576)493979417  |4 aut 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 15(2023), 6 vom: März, Artikel-ID 1820, Seite 1-16  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a MR-class a python tool for brain MR image classification utilizing one-vs-All DCNNs to deal with the open-set recognition problem 
773 1 8 |g volume:15  |g year:2023  |g number:6  |g month:03  |g elocationid:1820  |g pages:1-16  |g extent:16  |a MR-class a python tool for brain MR image classification utilizing one-vs-All DCNNs to deal with the open-set recognition problem 
856 4 0 |u https://doi.org/10.3390/cancers15061820  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/15/6/1820  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230425 
993 |a Article 
994 |a 2023 
998 |g 1140661949  |a Knoll, Maximilian  |m 1140661949:Knoll, Maximilian  |d 910000  |d 911400  |e 910000PK1140661949  |e 911400PK1140661949  |k 0/910000/  |k 1/910000/911400/  |p 10  |y j 
998 |g 129612715  |a Abdollahi, Amir  |m 129612715:Abdollahi, Amir  |d 910000  |d 911400  |e 910000PA129612715  |e 911400PA129612715  |k 0/910000/  |k 1/910000/911400/  |p 9 
998 |g 1022671421  |a Debus, Jürgen  |m 1022671421:Debus, Jürgen  |d 910000  |d 911400  |e 910000PD1022671421  |e 911400PD1022671421  |k 0/910000/  |k 1/910000/911400/  |p 8 
998 |g 106732626X  |a Heiland, Sabine  |m 106732626X:Heiland, Sabine  |d 910000  |d 911100  |e 910000PH106732626X  |e 911100PH106732626X  |k 0/910000/  |k 1/910000/911100/  |p 7 
998 |g 1022936549  |a Herold-Mende, Christel  |m 1022936549:Herold-Mende, Christel  |d 50000  |e 50000PH1022936549  |k 0/50000/  |p 6 
998 |g 1223468003  |a Kudak, Andreas  |m 1223468003:Kudak, Andreas  |d 910000  |d 911400  |e 910000PK1223468003  |e 911400PK1223468003  |k 0/910000/  |k 1/910000/911400/  |p 4 
998 |g 1197163123  |a Brugnara, Gianluca  |m 1197163123:Brugnara, Gianluca  |d 910000  |d 911100  |e 910000PB1197163123  |e 911100PB1197163123  |k 0/910000/  |k 1/910000/911100/  |p 3 
998 |g 1283872439  |a Salome, Patrick  |m 1283872439:Salome, Patrick  |d 50000  |e 50000PS1283872439  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1843494957  |e 4313647430 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 25.04.2023"],"title":[{"title":"MR-class","title_sort":"MR-class","subtitle":"a python tool for brain MR image classification utilizing one-vs-All DCNNs to deal with the open-set recognition problem"}],"origin":[{"dateIssuedDisp":"17 March 2023","dateIssuedKey":"2023"}],"relHost":[{"id":{"eki":["614095670"],"issn":["2072-6694"],"zdb":["2527080-1"]},"part":{"pages":"1-16","issue":"6","extent":"16","text":"15(2023), 6 vom: März, Artikel-ID 1820, Seite 1-16","year":"2023","volume":"15"},"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"pubHistory":["1.2009 -"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 27.05.2020"],"title":[{"title_sort":"Cancers","title":"Cancers"}],"origin":[{"dateIssuedKey":"2009","dateIssuedDisp":"2009-","publisherPlace":"Basel","publisher":"MDPI"}],"disp":"MR-class a python tool for brain MR image classification utilizing one-vs-All DCNNs to deal with the open-set recognition problemCancers","physDesc":[{"extent":"Online-Ressource"}],"recId":"614095670"}],"person":[{"family":"Salome","role":"aut","given":"Patrick","display":"Salome, Patrick"},{"display":"Sforazzini, Francesco","family":"Sforazzini","role":"aut","given":"Francesco"},{"display":"Brugnara, Gianluca","family":"Brugnara","role":"aut","given":"Gianluca"},{"family":"Kudak","role":"aut","given":"Andreas","display":"Kudak, Andreas"},{"display":"Dostal, Matthias","role":"aut","given":"Matthias","family":"Dostal"},{"family":"Herold-Mende","role":"aut","given":"Christel","display":"Herold-Mende, Christel"},{"given":"Sabine","role":"aut","family":"Heiland","display":"Heiland, Sabine"},{"display":"Debus, Jürgen","family":"Debus","role":"aut","given":"Jürgen"},{"family":"Abdollahi","given":"Amir","role":"aut","display":"Abdollahi, Amir"},{"display":"Knoll, Maximilian","given":"Maximilian","role":"aut","family":"Knoll"}],"physDesc":[{"extent":"16 S."}],"recId":"1843494957","id":{"eki":["1843494957"],"doi":["10.3390/cancers15061820"]},"name":{"displayForm":["Patrick Salome, Francesco Sforazzini, Gianluca Brugnara, Andreas Kudak, Matthias Dostal, Christel Herold-Mende, Sabine Heiland, Jürgen Debus, Amir Abdollahi and Maximilian Knoll"]}} 
SRT |a SALOMEPATRMRCLASS1720