Model-based extension of high-throughput to high-content data

High-quality quantitative data is a major limitation in systems biology. The experimental data used in systems biology can be assigned to one of the following categories: assays yielding average data of a cell population, high-content single cell measurements and high-throughput techniques generatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pfeifer, Andrea (VerfasserIn) , Kaschek, Daniel (VerfasserIn) , Bachmann, Julie (VerfasserIn) , Klingmüller, Ursula (VerfasserIn) , Timmer, Jens (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 05 August 2010
In: BMC systems biology
Year: 2010, Jahrgang: 4, Pages: 1-13
ISSN:1752-0509
DOI:10.1186/1752-0509-4-106
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1186/1752-0509-4-106
Volltext
Verfasserangaben:Andrea C. Pfeifer, Daniel Kaschek, Julie Bachmann, Ursula Klingmüller, Jens Timmer
Beschreibung
Zusammenfassung:High-quality quantitative data is a major limitation in systems biology. The experimental data used in systems biology can be assigned to one of the following categories: assays yielding average data of a cell population, high-content single cell measurements and high-throughput techniques generating single cell data for large cell populations. For modeling purposes, a combination of data from different categories is highly desirable in order to increase the number of observable species and processes and thereby maximize the identifiability of parameters.
Beschreibung:Gesehen am 02.05.2023
Beschreibung:Online Resource
ISSN:1752-0509
DOI:10.1186/1752-0509-4-106