Nonrelativistic inverse square potential, scale anomaly, and complex extension

The old problem of a singular, inverse square potential in nonrelativistic quantum mechanics is treated employing a field-theoretic, functional renormalization method. An emergent contact coupling flows to a fixed point or develops a limit cycle depending on the discriminant of its quadratic beta fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moroz, Sergej (VerfasserIn) , Schmidt, Richard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2010
In: Annals of physics
Year: 2010, Jahrgang: 325, Heft: 2, Pages: 491-513
DOI:10.1016/j.aop.2009.10.002
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aop.2009.10.002
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0003491609001936
Volltext
Verfasserangaben:Sergej Moroz, Richard Schmidt
Beschreibung
Zusammenfassung:The old problem of a singular, inverse square potential in nonrelativistic quantum mechanics is treated employing a field-theoretic, functional renormalization method. An emergent contact coupling flows to a fixed point or develops a limit cycle depending on the discriminant of its quadratic beta function. We analyze the fixed points in both conformal and nonconformal phases and perform a natural extension of the renormalization group analysis to complex values of the contact coupling. Physical interpretation and motivation for this extension is the presence of an inelastic scattering channel in two-body collisions. We present a geometric description of the complex generalization by considering renormalization group flows on the Riemann sphere. Finally, using bosonization, we find an analytical solution of the extended renormalization group flow equations, constituting the main result of our work.
Beschreibung:Erstmals am 12. Oktober 2009 online veröffentlicht
Gesehen am 04.05.2023
Beschreibung:Online Resource
DOI:10.1016/j.aop.2009.10.002