On the moments of the modulus of continuity of Itô processes

The modulus of continuity of a stochastic process is a random element for any fixed mesh size. We provide upper bounds for the moments of the modulus of continuity of Itô processes with possibly unbounded coefficients, starting from the special case of Brownian motion. References to known results f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fischer, Markus (VerfasserIn) , Nappo, Giovanna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 Dec 2009
In: Stochastic analysis and applications
Year: 2009, Jahrgang: 28, Heft: 1, Pages: 103-122
ISSN:1532-9356
DOI:10.1080/07362990903415825
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/07362990903415825
Volltext
Verfasserangaben:Markus Fischer & Giovanna Nappo
Beschreibung
Zusammenfassung:The modulus of continuity of a stochastic process is a random element for any fixed mesh size. We provide upper bounds for the moments of the modulus of continuity of Itô processes with possibly unbounded coefficients, starting from the special case of Brownian motion. References to known results for the case of Brownian motion and Itô processes with uniformly bounded coefficients are included. As an application, we obtain the rate of strong convergence of Euler-Maruyama schemes for the approximation of stochastic delay differential equations satisfying a Lipschitz condition in supremum norm.
Beschreibung:Gesehen am 08.05.2023
Beschreibung:Online Resource
ISSN:1532-9356
DOI:10.1080/07362990903415825