Combining probability forecasts
Linear pooling is by far the most popular method for combining probability forecasts. However, any non-trivial weighted average of two or more distinct, calibrated probability forecasts is necessarily uncalibrated and lacks sharpness. In view of this, linear pooling requires recalibration, even in t...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
06 January 2010
|
| In: |
Journal of the Royal Statistical Society. Series B, Statistical methodology
Year: 2010, Volume: 72, Issue: 1, Pages: 71-91 |
| ISSN: | 1467-9868 |
| DOI: | 10.1111/j.1467-9868.2009.00726.x |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1111/j.1467-9868.2009.00726.x |
| Author Notes: | Roopesh Ranjan and Tilmann Gneiting |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1844966658 | ||
| 003 | DE-627 | ||
| 005 | 20230710134826.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230510s2010 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1111/j.1467-9868.2009.00726.x |2 doi | |
| 035 | |a (DE-627)1844966658 | ||
| 035 | |a (DE-599)KXP1844966658 | ||
| 035 | |a (OCoLC)1389794430 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ranjan, Roopesh |e VerfasserIn |0 (DE-588)1261065697 |0 (DE-627)1807905276 |4 aut | |
| 245 | 1 | 0 | |a Combining probability forecasts |c Roopesh Ranjan and Tilmann Gneiting |
| 264 | 1 | |c 06 January 2010 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.05.2023 | ||
| 520 | |a Linear pooling is by far the most popular method for combining probability forecasts. However, any non-trivial weighted average of two or more distinct, calibrated probability forecasts is necessarily uncalibrated and lacks sharpness. In view of this, linear pooling requires recalibration, even in the ideal case in which the individual forecasts are calibrated. Towards this end, we propose a beta-transformed linear opinion pool for the aggregation of probability forecasts from distinct, calibrated or uncalibrated sources. The method fits an optimal non-linearly recalibrated forecast combination, by compositing a beta transform and the traditional linear opinion pool. The technique is illustrated in a simulation example and in a case-study on statistical and National Weather Service probability of precipitation forecasts. | ||
| 700 | 1 | |a Gneiting, Tilmann |e VerfasserIn |0 (DE-588)1019627484 |0 (DE-627)690974809 |0 (DE-576)358470323 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Royal Statistical Society |t Journal of the Royal Statistical Society. Series B, Statistical methodology |d Oxford : Oxford University Press, 1998 |g 72(2010), 1 vom: Jan., Seite 71-91 |h Online-Ressource |w (DE-627)30219746X |w (DE-600)1490719-7 |w (DE-576)079599281 |x 1467-9868 |7 nnas |
| 773 | 1 | 8 | |g volume:72 |g year:2010 |g number:1 |g month:01 |g pages:71-91 |g extent:21 |a Combining probability forecasts |
| 776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ranjan, Roopesh |t Combining probability forecasts |d 2010 |w (DE-627)1628655917 |w (DE-576)358822173 |
| 856 | 4 | 0 | |u https://doi.org/10.1111/j.1467-9868.2009.00726.x |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230510 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 1019627484 |a Gneiting, Tilmann |m 1019627484:Gneiting, Tilmann |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PG1019627484 |e 110200PG1019627484 |e 110000PG1019627484 |e 110400PG1019627484 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 999 | |a KXP-PPN1844966658 |e 4320314433 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1490719-7"],"doi":["10.1111/(ISSN)1467-9868"],"eki":["30219746X"],"issn":["1467-9868"]},"origin":[{"publisherPlace":"Oxford ; London ; London","dateIssuedDisp":"1998-","dateIssuedKey":"1998","publisher":"Oxford University Press ; Blackwell Publ. ; Wiley-Blackwell"}],"titleAlt":[{"title":"Journal of the Royal Statistical Society / B"}],"part":{"issue":"1","pages":"71-91","year":"2010","extent":"21","text":"72(2010), 1 vom: Jan., Seite 71-91","volume":"72"},"pubHistory":["Volume 60, part 1 (1998)-"],"language":["eng"],"corporate":[{"role":"aut","display":"Royal Statistical Society","roleDisplay":"VerfasserIn"}],"recId":"30219746X","note":["Gesehen am 21.08.23"],"disp":"Royal Statistical SocietyJournal of the Royal Statistical Society. Series B, Statistical methodology","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Journal of the Royal Statistical Society","title":"Journal of the Royal Statistical Society","partname":"Statistical methodology"}]}],"physDesc":[{"extent":"21 S."}],"name":{"displayForm":["Roopesh Ranjan and Tilmann Gneiting"]},"id":{"eki":["1844966658"],"doi":["10.1111/j.1467-9868.2009.00726.x"]},"origin":[{"dateIssuedDisp":"06 January 2010","dateIssuedKey":"2010"}],"language":["eng"],"recId":"1844966658","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 10.05.2023"],"person":[{"family":"Ranjan","given":"Roopesh","display":"Ranjan, Roopesh","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Tilmann","family":"Gneiting","role":"aut","roleDisplay":"VerfasserIn","display":"Gneiting, Tilmann"}],"title":[{"title_sort":"Combining probability forecasts","title":"Combining probability forecasts"}]} | ||
| SRT | |a RANJANROOPCOMBININGP0620 | ||