Combining probability forecasts

Linear pooling is by far the most popular method for combining probability forecasts. However, any non-trivial weighted average of two or more distinct, calibrated probability forecasts is necessarily uncalibrated and lacks sharpness. In view of this, linear pooling requires recalibration, even in t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ranjan, Roopesh (Author) , Gneiting, Tilmann (Author)
Format: Article (Journal)
Language:English
Published: 06 January 2010
In: Journal of the Royal Statistical Society. Series B, Statistical methodology
Year: 2010, Volume: 72, Issue: 1, Pages: 71-91
ISSN:1467-9868
DOI:10.1111/j.1467-9868.2009.00726.x
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1111/j.1467-9868.2009.00726.x
Get full text
Author Notes:Roopesh Ranjan and Tilmann Gneiting

MARC

LEADER 00000caa a2200000 c 4500
001 1844966658
003 DE-627
005 20230710134826.0
007 cr uuu---uuuuu
008 230510s2010 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1467-9868.2009.00726.x  |2 doi 
035 |a (DE-627)1844966658 
035 |a (DE-599)KXP1844966658 
035 |a (OCoLC)1389794430 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ranjan, Roopesh  |e VerfasserIn  |0 (DE-588)1261065697  |0 (DE-627)1807905276  |4 aut 
245 1 0 |a Combining probability forecasts  |c Roopesh Ranjan and Tilmann Gneiting 
264 1 |c 06 January 2010 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.05.2023 
520 |a Linear pooling is by far the most popular method for combining probability forecasts. However, any non-trivial weighted average of two or more distinct, calibrated probability forecasts is necessarily uncalibrated and lacks sharpness. In view of this, linear pooling requires recalibration, even in the ideal case in which the individual forecasts are calibrated. Towards this end, we propose a beta-transformed linear opinion pool for the aggregation of probability forecasts from distinct, calibrated or uncalibrated sources. The method fits an optimal non-linearly recalibrated forecast combination, by compositing a beta transform and the traditional linear opinion pool. The technique is illustrated in a simulation example and in a case-study on statistical and National Weather Service probability of precipitation forecasts. 
700 1 |a Gneiting, Tilmann  |e VerfasserIn  |0 (DE-588)1019627484  |0 (DE-627)690974809  |0 (DE-576)358470323  |4 aut 
773 0 8 |i Enthalten in  |a Royal Statistical Society  |t Journal of the Royal Statistical Society. Series B, Statistical methodology  |d Oxford : Oxford University Press, 1998  |g 72(2010), 1 vom: Jan., Seite 71-91  |h Online-Ressource  |w (DE-627)30219746X  |w (DE-600)1490719-7  |w (DE-576)079599281  |x 1467-9868  |7 nnas 
773 1 8 |g volume:72  |g year:2010  |g number:1  |g month:01  |g pages:71-91  |g extent:21  |a Combining probability forecasts 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Ranjan, Roopesh  |t Combining probability forecasts  |d 2010  |w (DE-627)1628655917  |w (DE-576)358822173 
856 4 0 |u https://doi.org/10.1111/j.1467-9868.2009.00726.x  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230510 
993 |a Article 
994 |a 2010 
998 |g 1019627484  |a Gneiting, Tilmann  |m 1019627484:Gneiting, Tilmann  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PG1019627484  |e 110200PG1019627484  |e 110000PG1019627484  |e 110400PG1019627484  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1844966658  |e 4320314433 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1490719-7"],"doi":["10.1111/(ISSN)1467-9868"],"eki":["30219746X"],"issn":["1467-9868"]},"origin":[{"publisherPlace":"Oxford ; London ; London","dateIssuedDisp":"1998-","dateIssuedKey":"1998","publisher":"Oxford University Press ; Blackwell Publ. ; Wiley-Blackwell"}],"titleAlt":[{"title":"Journal of the Royal Statistical Society / B"}],"part":{"issue":"1","pages":"71-91","year":"2010","extent":"21","text":"72(2010), 1 vom: Jan., Seite 71-91","volume":"72"},"pubHistory":["Volume 60, part 1 (1998)-"],"language":["eng"],"corporate":[{"role":"aut","display":"Royal Statistical Society","roleDisplay":"VerfasserIn"}],"recId":"30219746X","note":["Gesehen am 21.08.23"],"disp":"Royal Statistical SocietyJournal of the Royal Statistical Society. Series B, Statistical methodology","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Journal of the Royal Statistical Society","title":"Journal of the Royal Statistical Society","partname":"Statistical methodology"}]}],"physDesc":[{"extent":"21 S."}],"name":{"displayForm":["Roopesh Ranjan and Tilmann Gneiting"]},"id":{"eki":["1844966658"],"doi":["10.1111/j.1467-9868.2009.00726.x"]},"origin":[{"dateIssuedDisp":"06 January 2010","dateIssuedKey":"2010"}],"language":["eng"],"recId":"1844966658","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 10.05.2023"],"person":[{"family":"Ranjan","given":"Roopesh","display":"Ranjan, Roopesh","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Tilmann","family":"Gneiting","role":"aut","roleDisplay":"VerfasserIn","display":"Gneiting, Tilmann"}],"title":[{"title_sort":"Combining probability forecasts","title":"Combining probability forecasts"}]} 
SRT |a RANJANROOPCOMBININGP0620