Critical point theory of symmetric functions and closed geodesics

We develop a version of equivariant critical point theory particularly adapted to finding closed geodesics by variational methods and use it to improve the known lower bounds for the number of “short” closed geodesics on some closed Riemannian manifolds.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Clapp, Mónica (VerfasserIn) , Puppe, Dieter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1996
In: Differential geometry and its applications
Year: 1996, Jahrgang: 6, Heft: 4, Pages: 367-396
DOI:10.1016/S0926-2245(96)00032-0
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S0926-2245(96)00032-0
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0926224596000320
Volltext
Verfasserangaben:Mónica Clapp, Dieter Puppe
Beschreibung
Zusammenfassung:We develop a version of equivariant critical point theory particularly adapted to finding closed geodesics by variational methods and use it to improve the known lower bounds for the number of “short” closed geodesics on some closed Riemannian manifolds.
Beschreibung:Elektronische Reproduktion der Druck-Ausgabe 16. Februar 1999
Gesehen am 11.05.2023
Beschreibung:Online Resource
DOI:10.1016/S0926-2245(96)00032-0