Cohomological detection and regular elements in group cohomology

Suppose that G is a compact Lie group or a discrete group of finite virtual cohomological dimension and that k is a field of characteristic p > 0. Suppose that O is a set of elementary abelian p-subgroups G such that the cohomology H∗(BG, k) is detected on the centralizers of the elements of O. Ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carlson, Jon F. (VerfasserIn) , Henn, Hans-Werner (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1996
In: Proceedings of the American Mathematical Society
Year: 1996, Jahrgang: 124, Heft: 3, Pages: 665-670
ISSN:1088-6826
DOI:10.1090/S0002-9939-96-03331-X
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/S0002-9939-96-03331-X
Verlag, lizenzpflichtig, Volltext: http://www.ams.org/proc/1996-124-03/S0002-9939-96-03331-X/
Volltext
Verfasserangaben:Jon F. Carlson, Hans-Werner Henn
Beschreibung
Zusammenfassung:Suppose that G is a compact Lie group or a discrete group of finite virtual cohomological dimension and that k is a field of characteristic p > 0. Suppose that O is a set of elementary abelian p-subgroups G such that the cohomology H∗(BG, k) is detected on the centralizers of the elements of O. Assume also that O is closed under conjugation and that E is in O whenever some subgroup of E is in O. Then there exists a regular element ζ in the cohomology ring H∗(BG, k) such that the restriction of ζ to an elementary abelian p-subgroup E is not nilpotent if and only if E is in O. The converse of the result is a theorem of Lannes, Schwartz and the second author. The results have several implications for the depth and associated primes of the cohomology rings.
Beschreibung:Gesehen am 15.05.2023
Beschreibung:Online Resource
ISSN:1088-6826
DOI:10.1090/S0002-9939-96-03331-X