Uniqueness for the fractional Calderón problem with quasilocal perturbations
We study the fractional Schrödinger equation with quasilocal perturbations and show that the qualitative unique continuation and Runge approximation properties hold in the assumption of sufficient decay. Quantitative versions of both results are also obtained via a propagation of smallness analysis...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2022
|
| In: |
SIAM journal on mathematical analysis
Year: 2022, Jahrgang: 54, Heft: 6, Pages: 6136-6163 |
| ISSN: | 1095-7154 |
| DOI: | 10.1137/22M1478641 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/22M1478641 Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/22M1478641 |
| Verfasserangaben: | Giovanni Covi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1845503716 | ||
| 003 | DE-627 | ||
| 005 | 20230706223735.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230516s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/22M1478641 |2 doi | |
| 035 | |a (DE-627)1845503716 | ||
| 035 | |a (DE-599)KXP1845503716 | ||
| 035 | |a (OCoLC)1389533812 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Covi, Giovanni |e VerfasserIn |0 (DE-588)1233397397 |0 (DE-627)1757753036 |4 aut | |
| 245 | 1 | 0 | |a Uniqueness for the fractional Calderón problem with quasilocal perturbations |c Giovanni Covi |
| 264 | 1 | |c 2022 | |
| 300 | |a 28 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.05.2023 | ||
| 520 | |a We study the fractional Schrödinger equation with quasilocal perturbations and show that the qualitative unique continuation and Runge approximation properties hold in the assumption of sufficient decay. Quantitative versions of both results are also obtained via a propagation of smallness analysis for the Caffarelli--Silvestre extension. The results are then used to show uniqueness in the inverse problem of retrieving a quasilocal perturbation from Dirichlet-to-Neumann (DN) data under suitable geometric assumptions. Our work generalizes recent results regarding the locally perturbed fractional Calderón problem. | ||
| 773 | 0 | 8 | |i Enthalten in |a Society for Industrial and Applied Mathematics |t SIAM journal on mathematical analysis |d Philadelphia, Pa. : SIAM, 1970 |g 54(2022), 6, Seite 6136-6163 |h Online-Ressource |w (DE-627)266885411 |w (DE-600)1468406-8 |w (DE-576)078589983 |x 1095-7154 |7 nnas |
| 773 | 1 | 8 | |g volume:54 |g year:2022 |g number:6 |g pages:6136-6163 |g extent:28 |a Uniqueness for the fractional Calderón problem with quasilocal perturbations |
| 856 | 4 | 0 | |u https://doi.org/10.1137/22M1478641 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://epubs.siam.org/doi/10.1137/22M1478641 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230516 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1233397397 |a Covi, Giovanni |m 1233397397:Covi, Giovanni |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PC1233397397 |e 110200PC1233397397 |e 110000PC1233397397 |e 110400PC1233397397 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1845503716 |e 4322739903 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1137/22M1478641"],"eki":["1845503716"]},"name":{"displayForm":["Giovanni Covi"]},"physDesc":[{"extent":"28 S."}],"relHost":[{"pubHistory":["1.1970 -"],"titleAlt":[{"title":"Journal on mathematical analysis"}],"part":{"year":"2022","pages":"6136-6163","issue":"6","text":"54(2022), 6, Seite 6136-6163","volume":"54","extent":"28"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on mathematical analysis","note":["Gesehen am 28.06.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"266885411","language":["eng"],"corporate":[{"display":"Society for Industrial and Applied Mathematics","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"SIAM journal on mathematical analysis","title":"SIAM journal on mathematical analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Philadelphia, Pa.","dateIssuedKey":"1970","publisher":"SIAM","dateIssuedDisp":"1970-"}],"id":{"issn":["1095-7154"],"zdb":["1468406-8"],"eki":["266885411"]},"name":{"displayForm":["Society for Industrial and Applied Mathematics"]}}],"title":[{"title":"Uniqueness for the fractional Calderón problem with quasilocal perturbations","title_sort":"Uniqueness for the fractional Calderón problem with quasilocal perturbations"}],"person":[{"given":"Giovanni","family":"Covi","role":"aut","roleDisplay":"VerfasserIn","display":"Covi, Giovanni"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 16.05.2023"],"language":["eng"],"recId":"1845503716"} | ||
| SRT | |a COVIGIOVANUNIQUENESS2022 | ||