Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation traces
Any ultrafast optical spectroscopy experiment is usually accompanied by the necessary routine of ultrashort-pulse characterization. The majority of pulse characterization approaches solve either a one-dimensional (e.g., via interferometry) or a two-dimensional (e.g., via frequency-resolved measureme...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
March 24, 2023
|
| In: |
Optics express
Year: 2023, Volume: 31, Issue: 7, Pages: 11806-11819 |
| ISSN: | 1094-4087 |
| DOI: | 10.1364/OE.479638 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1364/OE.479638 Verlag, lizenzpflichtig, Volltext: https://opg.optica.org/oe/abstract.cfm?uri=oe-31-7-11806 |
| Author Notes: | Pavel V. Kolesnichenko, Donatas Zigmantas |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 184552800X | ||
| 003 | DE-627 | ||
| 005 | 20230706210459.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230516s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1364/OE.479638 |2 doi | |
| 035 | |a (DE-627)184552800X | ||
| 035 | |a (DE-599)KXP184552800X | ||
| 035 | |a (OCoLC)1389530139 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Kolesnichenko, Pavel V. |e VerfasserIn |0 (DE-588)128953537X |0 (DE-627)1845528409 |4 aut | |
| 245 | 1 | 0 | |a Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation traces |c Pavel V. Kolesnichenko, Donatas Zigmantas |
| 264 | 1 | |c March 24, 2023 | |
| 300 | |a 14 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.05.2023 | ||
| 520 | |a Any ultrafast optical spectroscopy experiment is usually accompanied by the necessary routine of ultrashort-pulse characterization. The majority of pulse characterization approaches solve either a one-dimensional (e.g., via interferometry) or a two-dimensional (e.g., via frequency-resolved measurements) problem. Solution of the two-dimensional pulse-retrieval problem is generally more consistent due to the problem’s over-determined nature. In contrast, the one-dimensional pulse-retrieval problem, unless constraints are added, is impossible to solve unambiguously as ultimately imposed by the fundamental theorem of algebra. In cases where additional constraints are involved, the one-dimensional problem may be possible to solve, however, existing iterative algorithms lack generality, and often stagnate for complicated pulse shapes. Here we use a deep neural network to unambiguously solve a constrained one-dimensional pulse-retrieval problem and show the potential of fast, reliable and complete pulse characterization using interferometric correlation time traces determined by the pulses with partial spectral overlap. | ||
| 700 | 1 | |a Zigmantas, Donatas |e VerfasserIn |0 (DE-588)1289535736 |0 (DE-627)1845529111 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Optics express |d Washington, DC : Optica, 1997 |g 31(2023), 7 vom: März, Seite 11806-11819 |h Online-Ressource |w (DE-627)302718370 |w (DE-600)1491859-6 |w (DE-576)079876579 |x 1094-4087 |7 nnas |a Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation traces |
| 773 | 1 | 8 | |g volume:31 |g year:2023 |g number:7 |g month:03 |g pages:11806-11819 |g extent:14 |a Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation traces |
| 856 | 4 | 0 | |u https://doi.org/10.1364/OE.479638 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://opg.optica.org/oe/abstract.cfm?uri=oe-31-7-11806 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230516 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 128953537X |a Kolesnichenko, Pavel V. |m 128953537X:Kolesnichenko, Pavel V. |d 120000 |d 120300 |e 120000PK128953537X |e 120300PK128953537X |k 0/120000/ |k 1/120000/120300/ |p 1 |x j | ||
| 999 | |a KXP-PPN184552800X |e 4322838510 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Pavel V. Kolesnichenko, Donatas Zigmantas"]},"id":{"doi":["10.1364/OE.479638"],"eki":["184552800X"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"March 24, 2023"}],"relHost":[{"pubHistory":["1.1997 -"],"part":{"extent":"14","volume":"31","text":"31(2023), 7 vom: März, Seite 11806-11819","pages":"11806-11819","issue":"7","year":"2023"},"disp":"Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation tracesOptics express","note":["Gesehen am 10.01.2022","Herausgebendes Organ bis 2021: Optical Society of America"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"Optica"},{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"Optical Society of America"}],"recId":"302718370","title":[{"title_sort":"Optics express","title":"Optics express","subtitle":"the international electronic journal of optics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1997-","publisher":"Optica ; Optical Society of America, OSA","dateIssuedKey":"1997","publisherPlace":"Washington, DC ; Washington, DC"}],"id":{"issn":["1094-4087"],"zdb":["1491859-6"],"eki":["302718370"]},"name":{"displayForm":["Optica"]}}],"physDesc":[{"extent":"14 S."}],"person":[{"roleDisplay":"VerfasserIn","display":"Kolesnichenko, Pavel V.","role":"aut","family":"Kolesnichenko","given":"Pavel V."},{"display":"Zigmantas, Donatas","roleDisplay":"VerfasserIn","role":"aut","family":"Zigmantas","given":"Donatas"}],"title":[{"title":"Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation traces","title_sort":"Neural-network-powered pulse reconstruction from one-dimensional interferometric correlation traces"}],"language":["eng"],"recId":"184552800X","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 16.05.2023"]} | ||
| SRT | |a KOLESNICHENEURALNETW2420 | ||