Learning high-order interactions for polygenic risk prediction

Within the framework of precision medicine, the stratification of individual genetic susceptibility based on inherited DNA variation has paramount relevance. However, one of the most relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to model complex high-orde...

Full description

Saved in:
Bibliographic Details
Main Authors: Massi, Michela Carlotta (Author) , Franco, Nicola R. (Author) , Manzoni, Andrea (Author) , Paganoni, Anna Maria (Author) , Park, Hanla A. (Author) , Hoffmeister, Michael (Author) , Brenner, Hermann (Author) , Chang-Claude, Jenny (Author) , Ieva, Francesca (Author) , Zunino, Paolo (Author)
Format: Article (Journal)
Language:English
Published: February 10, 2023
In: PLOS ONE
Year: 2023, Volume: 18, Issue: 2, Pages: 1-27
ISSN:1932-6203
DOI:10.1371/journal.pone.0281618
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1371/journal.pone.0281618
Verlag, lizenzpflichtig, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281618
Get full text
Author Notes:Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino

MARC

LEADER 00000caa a2200000 c 4500
001 1845889614
003 DE-627
005 20230706205817.0
007 cr uuu---uuuuu
008 230522s2023 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0281618  |2 doi 
035 |a (DE-627)1845889614 
035 |a (DE-599)KXP1845889614 
035 |a (OCoLC)1389529691 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Massi, Michela Carlotta  |e VerfasserIn  |0 (DE-588)1222680297  |0 (DE-627)1741840821  |4 aut 
245 1 0 |a Learning high-order interactions for polygenic risk prediction  |c Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino 
264 1 |c February 10, 2023 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.05.2023 
520 |a Within the framework of precision medicine, the stratification of individual genetic susceptibility based on inherited DNA variation has paramount relevance. However, one of the most relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to model complex high-order non-linear SNP-SNP interactions and their effect on the phenotype (e.g. epistasis). Indeed, they incur in a computational challenge as the number of possible interactions grows exponentially with the number of SNPs considered, affecting the statistical reliability of the model parameters as well. In this work, we address this issue by proposing a novel PRS approach, called High-order Interactions-aware Polygenic Risk Score (hiPRS), that incorporates high-order interactions in modeling polygenic risk. The latter combines an interaction search routine based on frequent itemsets mining and a novel interaction selection algorithm based on Mutual Information, to construct a simple and interpretable weighted model of user-specified dimensionality that can predict a given binary phenotype. Compared to traditional PRSs methods, hiPRS does not rely on GWAS summary statistics nor any external information. Moreover, hiPRS differs from Machine Learning-based approaches that can include complex interactions in that it provides a readable and interpretable model and it is able to control overfitting, even on small samples. In the present work we demonstrate through a comprehensive simulation study the superior performance of hiPRS w.r.t. state of the art methods, both in terms of scoring performance and interpretability of the resulting model. We also test hiPRS against small sample size, class imbalance and the presence of noise, showcasing its robustness to extreme experimental settings. Finally, we apply hiPRS to a case study on real data from DACHS cohort, defining an interaction-aware scoring model to predict mortality of stage II-III Colon-Rectal Cancer patients treated with oxaliplatin. 
650 4 |a Algorithms 
650 4 |a Atrial fibrillation 
650 4 |a Cancer risk factors 
650 4 |a Cancer treatment 
650 4 |a Genome-wide association studies 
650 4 |a Medical risk factors 
650 4 |a Simulation and modeling 
650 4 |a Single nucleotide polymorphisms 
700 1 |a Franco, Nicola R.  |e VerfasserIn  |4 aut 
700 1 |a Manzoni, Andrea  |e VerfasserIn  |4 aut 
700 1 |a Paganoni, Anna Maria  |e VerfasserIn  |4 aut 
700 1 |a Park, Hanla A.  |e VerfasserIn  |4 aut 
700 1 |a Hoffmeister, Michael  |d 1973-  |e VerfasserIn  |0 (DE-588)134103726  |0 (DE-627)560880820  |0 (DE-576)277089565  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Chang-Claude, Jenny  |e VerfasserIn  |0 (DE-588)1049304993  |0 (DE-627)781626188  |0 (DE-576)168344475  |4 aut 
700 1 |a Ieva, Francesca  |e VerfasserIn  |4 aut 
700 1 |a Zunino, Paolo  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g 18(2023), 2 vom: Feb., Artikel-ID e0281618, Seite 1-27  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas  |a Learning high-order interactions for polygenic risk prediction 
773 1 8 |g volume:18  |g year:2023  |g number:2  |g month:02  |g elocationid:e0281618  |g pages:1-27  |g extent:27  |a Learning high-order interactions for polygenic risk prediction 
856 4 0 |u https://doi.org/10.1371/journal.pone.0281618  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281618  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230522 
993 |a Article 
994 |a 2023 
998 |g 1049304993  |a Chang-Claude, Jenny  |m 1049304993:Chang-Claude, Jenny  |d 50000  |e 50000PC1049304993  |k 0/50000/  |p 8 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 7 
998 |g 134103726  |a Hoffmeister, Michael  |m 134103726:Hoffmeister, Michael  |d 50000  |e 50000PH134103726  |k 0/50000/  |p 6 
999 |a KXP-PPN1845889614  |e 4324407010 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 22.05.2023"],"origin":[{"dateIssuedDisp":"February 10, 2023","dateIssuedKey":"2023"}],"title":[{"title":"Learning high-order interactions for polygenic risk prediction","title_sort":"Learning high-order interactions for polygenic risk prediction"}],"id":{"eki":["1845889614"],"doi":["10.1371/journal.pone.0281618"]},"name":{"displayForm":["Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino"]},"physDesc":[{"extent":"27 S."}],"relHost":[{"language":["eng"],"part":{"extent":"27","volume":"18","issue":"2","text":"18(2023), 2 vom: Feb., Artikel-ID e0281618, Seite 1-27","pages":"1-27","year":"2023"},"corporate":[{"role":"isb","display":"Public Library of Science"}],"recId":"523574592","physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Public Library of Science"]},"id":{"zdb":["2267670-3"],"issn":["1932-6203"],"eki":["523574592"]},"title":[{"title_sort":"PLOS ONE","title":"PLOS ONE"}],"origin":[{"dateIssuedDisp":"2006-","dateIssuedKey":"2006","publisher":"PLOS ; PLoS","publisherPlace":"San Francisco, California, US ; Lawrence, Kan."}],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"pubHistory":["1.2006 -"],"disp":"Learning high-order interactions for polygenic risk predictionPLOS ONE","type":{"bibl":"periodical","media":"Online-Ressource"}}],"recId":"1845889614","person":[{"given":"Michela Carlotta","role":"aut","display":"Massi, Michela Carlotta","family":"Massi"},{"display":"Franco, Nicola R.","family":"Franco","given":"Nicola R.","role":"aut"},{"role":"aut","given":"Andrea","display":"Manzoni, Andrea","family":"Manzoni"},{"role":"aut","given":"Anna Maria","display":"Paganoni, Anna Maria","family":"Paganoni"},{"display":"Park, Hanla A.","family":"Park","given":"Hanla A.","role":"aut"},{"family":"Hoffmeister","display":"Hoffmeister, Michael","given":"Michael","role":"aut"},{"role":"aut","given":"Hermann","display":"Brenner, Hermann","family":"Brenner"},{"role":"aut","given":"Jenny","display":"Chang-Claude, Jenny","family":"Chang-Claude"},{"role":"aut","given":"Francesca","display":"Ieva, Francesca","family":"Ieva"},{"given":"Paolo","role":"aut","family":"Zunino","display":"Zunino, Paolo"}],"language":["eng"]} 
SRT |a MASSIMICHELEARNINGHI1020