Learning high-order interactions for polygenic risk prediction
Within the framework of precision medicine, the stratification of individual genetic susceptibility based on inherited DNA variation has paramount relevance. However, one of the most relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to model complex high-orde...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
February 10, 2023
|
| In: |
PLOS ONE
Year: 2023, Volume: 18, Issue: 2, Pages: 1-27 |
| ISSN: | 1932-6203 |
| DOI: | 10.1371/journal.pone.0281618 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1371/journal.pone.0281618 Verlag, lizenzpflichtig, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281618 |
| Author Notes: | Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1845889614 | ||
| 003 | DE-627 | ||
| 005 | 20230706205817.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230522s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1371/journal.pone.0281618 |2 doi | |
| 035 | |a (DE-627)1845889614 | ||
| 035 | |a (DE-599)KXP1845889614 | ||
| 035 | |a (OCoLC)1389529691 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Massi, Michela Carlotta |e VerfasserIn |0 (DE-588)1222680297 |0 (DE-627)1741840821 |4 aut | |
| 245 | 1 | 0 | |a Learning high-order interactions for polygenic risk prediction |c Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino |
| 264 | 1 | |c February 10, 2023 | |
| 300 | |a 27 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 22.05.2023 | ||
| 520 | |a Within the framework of precision medicine, the stratification of individual genetic susceptibility based on inherited DNA variation has paramount relevance. However, one of the most relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to model complex high-order non-linear SNP-SNP interactions and their effect on the phenotype (e.g. epistasis). Indeed, they incur in a computational challenge as the number of possible interactions grows exponentially with the number of SNPs considered, affecting the statistical reliability of the model parameters as well. In this work, we address this issue by proposing a novel PRS approach, called High-order Interactions-aware Polygenic Risk Score (hiPRS), that incorporates high-order interactions in modeling polygenic risk. The latter combines an interaction search routine based on frequent itemsets mining and a novel interaction selection algorithm based on Mutual Information, to construct a simple and interpretable weighted model of user-specified dimensionality that can predict a given binary phenotype. Compared to traditional PRSs methods, hiPRS does not rely on GWAS summary statistics nor any external information. Moreover, hiPRS differs from Machine Learning-based approaches that can include complex interactions in that it provides a readable and interpretable model and it is able to control overfitting, even on small samples. In the present work we demonstrate through a comprehensive simulation study the superior performance of hiPRS w.r.t. state of the art methods, both in terms of scoring performance and interpretability of the resulting model. We also test hiPRS against small sample size, class imbalance and the presence of noise, showcasing its robustness to extreme experimental settings. Finally, we apply hiPRS to a case study on real data from DACHS cohort, defining an interaction-aware scoring model to predict mortality of stage II-III Colon-Rectal Cancer patients treated with oxaliplatin. | ||
| 650 | 4 | |a Algorithms | |
| 650 | 4 | |a Atrial fibrillation | |
| 650 | 4 | |a Cancer risk factors | |
| 650 | 4 | |a Cancer treatment | |
| 650 | 4 | |a Genome-wide association studies | |
| 650 | 4 | |a Medical risk factors | |
| 650 | 4 | |a Simulation and modeling | |
| 650 | 4 | |a Single nucleotide polymorphisms | |
| 700 | 1 | |a Franco, Nicola R. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Manzoni, Andrea |e VerfasserIn |4 aut | |
| 700 | 1 | |a Paganoni, Anna Maria |e VerfasserIn |4 aut | |
| 700 | 1 | |a Park, Hanla A. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Hoffmeister, Michael |d 1973- |e VerfasserIn |0 (DE-588)134103726 |0 (DE-627)560880820 |0 (DE-576)277089565 |4 aut | |
| 700 | 1 | |a Brenner, Hermann |e VerfasserIn |0 (DE-588)1020516445 |0 (DE-627)691247005 |0 (DE-576)360642136 |4 aut | |
| 700 | 1 | |a Chang-Claude, Jenny |e VerfasserIn |0 (DE-588)1049304993 |0 (DE-627)781626188 |0 (DE-576)168344475 |4 aut | |
| 700 | 1 | |a Ieva, Francesca |e VerfasserIn |4 aut | |
| 700 | 1 | |a Zunino, Paolo |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t PLOS ONE |d San Francisco, California, US : PLOS, 2006 |g 18(2023), 2 vom: Feb., Artikel-ID e0281618, Seite 1-27 |h Online-Ressource |w (DE-627)523574592 |w (DE-600)2267670-3 |w (DE-576)281331979 |x 1932-6203 |7 nnas |a Learning high-order interactions for polygenic risk prediction |
| 773 | 1 | 8 | |g volume:18 |g year:2023 |g number:2 |g month:02 |g elocationid:e0281618 |g pages:1-27 |g extent:27 |a Learning high-order interactions for polygenic risk prediction |
| 856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0281618 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281618 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230522 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1049304993 |a Chang-Claude, Jenny |m 1049304993:Chang-Claude, Jenny |d 50000 |e 50000PC1049304993 |k 0/50000/ |p 8 | ||
| 998 | |g 1020516445 |a Brenner, Hermann |m 1020516445:Brenner, Hermann |d 850000 |d 851600 |d 50000 |e 850000PB1020516445 |e 851600PB1020516445 |e 50000PB1020516445 |k 0/850000/ |k 1/850000/851600/ |k 0/50000/ |p 7 | ||
| 998 | |g 134103726 |a Hoffmeister, Michael |m 134103726:Hoffmeister, Michael |d 50000 |e 50000PH134103726 |k 0/50000/ |p 6 | ||
| 999 | |a KXP-PPN1845889614 |e 4324407010 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 22.05.2023"],"origin":[{"dateIssuedDisp":"February 10, 2023","dateIssuedKey":"2023"}],"title":[{"title":"Learning high-order interactions for polygenic risk prediction","title_sort":"Learning high-order interactions for polygenic risk prediction"}],"id":{"eki":["1845889614"],"doi":["10.1371/journal.pone.0281618"]},"name":{"displayForm":["Michela C. Massi, Nicola R. Franco, Andrea Manzoni, Anna Maria Paganoni, Hanla A. Park, Michael Hoffmeister, Hermann Brenner, Jenny Chang-Claude, Francesca Ieva, Paolo Zunino"]},"physDesc":[{"extent":"27 S."}],"relHost":[{"language":["eng"],"part":{"extent":"27","volume":"18","issue":"2","text":"18(2023), 2 vom: Feb., Artikel-ID e0281618, Seite 1-27","pages":"1-27","year":"2023"},"corporate":[{"role":"isb","display":"Public Library of Science"}],"recId":"523574592","physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Public Library of Science"]},"id":{"zdb":["2267670-3"],"issn":["1932-6203"],"eki":["523574592"]},"title":[{"title_sort":"PLOS ONE","title":"PLOS ONE"}],"origin":[{"dateIssuedDisp":"2006-","dateIssuedKey":"2006","publisher":"PLOS ; PLoS","publisherPlace":"San Francisco, California, US ; Lawrence, Kan."}],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"pubHistory":["1.2006 -"],"disp":"Learning high-order interactions for polygenic risk predictionPLOS ONE","type":{"bibl":"periodical","media":"Online-Ressource"}}],"recId":"1845889614","person":[{"given":"Michela Carlotta","role":"aut","display":"Massi, Michela Carlotta","family":"Massi"},{"display":"Franco, Nicola R.","family":"Franco","given":"Nicola R.","role":"aut"},{"role":"aut","given":"Andrea","display":"Manzoni, Andrea","family":"Manzoni"},{"role":"aut","given":"Anna Maria","display":"Paganoni, Anna Maria","family":"Paganoni"},{"display":"Park, Hanla A.","family":"Park","given":"Hanla A.","role":"aut"},{"family":"Hoffmeister","display":"Hoffmeister, Michael","given":"Michael","role":"aut"},{"role":"aut","given":"Hermann","display":"Brenner, Hermann","family":"Brenner"},{"role":"aut","given":"Jenny","display":"Chang-Claude, Jenny","family":"Chang-Claude"},{"role":"aut","given":"Francesca","display":"Ieva, Francesca","family":"Ieva"},{"given":"Paolo","role":"aut","family":"Zunino","display":"Zunino, Paolo"}],"language":["eng"]} | ||
| SRT | |a MASSIMICHELEARNINGHI1020 | ||