On the instability of an oscillator in a field

We discuss the origin of dissipation in a one-dimension model describing the interaction of a microsystem (an oscillator) with a bath (a quantized field). The Hamiltonian is a gauge-type coupling of the oscillator with the field and it is bounded below. Classical and quantum pictures are considered....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Efimov, Garij V. (VerfasserIn) , Waldenfels, Wilhelm von (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1994
In: Annals of physics
Year: 1994, Jahrgang: 233, Heft: 2, Pages: 182-213
DOI:10.1006/aphy.1994.1065
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1006/aphy.1994.1065
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0003491684710657
Volltext
Verfasserangaben:G.V. Efimov, W. Vonwaldenfels
Beschreibung
Zusammenfassung:We discuss the origin of dissipation in a one-dimension model describing the interaction of a microsystem (an oscillator) with a bath (a quantized field). The Hamiltonian is a gauge-type coupling of the oscillator with the field and it is bounded below. Classical and quantum pictures are considered. Our formulation of the problem: what stable states are described by the total Hamiltonian if the excited states of the oscillator are unstable? How can these unstable states arise in a conservative system? The vacua of the free and the interacting system are found in dipole approximation. The theory determines a formfactor which optimizes the contributions of the total Hamiltonian in dipole approximation. These two vacua generate equivalent representations of canonical commutation relations. As a result of the oscillator-field interaction the stable states of this system consist of the vacuum (oscillator ground state) and quanta of the quantized field (bath). It means that the oscillator as a stable state can exist only in the ground state. Any excited oscillator states can be seen as resonances in the field-field scattering.
Beschreibung:Falsche Namensform in der Vorlage
Elektronische Reproduktion der Druck-Ausgabe 25. Mai 2002
Gesehen am 31.05.2023
Beschreibung:Online Resource
DOI:10.1006/aphy.1994.1065