Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees

We construct an r. e. degree a which possesses a greatest a-minimal pair b0, b1, i.e., r. e. degrees b0 and b1 such that b0, b1 < a, b0 ∩ b1 = a, and, for any other pair c0, c1 with these properties, c0 ≤ bi and c1 ≤ b1-i for some i ≤ 1. By extending this result, we show that there are strongly n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambos-Spies, Klaus (VerfasserIn) , Decheng, Ding (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1994
In: Mathematical logic quarterly
Year: 1994, Jahrgang: 40, Heft: 3, Pages: 287-317
ISSN:1521-3870
DOI:10.1002/malq.19940400302
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/malq.19940400302
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19940400302
Volltext
Verfasserangaben:Klaus Ambos-Spies, Ding Decheng

MARC

LEADER 00000caa a2200000 c 4500
001 1847043038
003 DE-627
005 20230710182348.0
007 cr uuu---uuuuu
008 230531s1994 xx |||||o 00| ||eng c
024 7 |a 10.1002/malq.19940400302  |2 doi 
035 |a (DE-627)1847043038 
035 |a (DE-599)KXP1847043038 
035 |a (OCoLC)1389826604 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ambos-Spies, Klaus  |d 1951-  |e VerfasserIn  |0 (DE-588)141551607  |0 (DE-627)629951861  |0 (DE-576)16006810X  |4 aut 
245 1 0 |a Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees  |c Klaus Ambos-Spies, Ding Decheng 
264 1 |c 1994 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 31.05.2023 
520 |a We construct an r. e. degree a which possesses a greatest a-minimal pair b0, b1, i.e., r. e. degrees b0 and b1 such that b0, b1 < a, b0 ∩ b1 = a, and, for any other pair c0, c1 with these properties, c0 ≤ bi and c1 ≤ b1-i for some i ≤ 1. By extending this result, we show that there are strongly nonbranching degrees which are not strongly noncappable. Finally, by introducing a new genericity concept for r. e. sets, we prove a jump theorem for the strongly nonbranching and strongly noncappable r. e. degrees. Mathematics Subject Classification: 03D25. 
650 4 |a a-cappable degrees 
650 4 |a Generic degrees 
650 4 |a Jump theorem 
650 4 |a Strongly nonbranching degrees 
650 4 |a Strongly noncappable degrees 
700 1 |a Decheng, Ding  |e VerfasserIn  |0 (DE-588)1290947457  |0 (DE-627)1847043542  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical logic quarterly  |d Berlin : Wiley-VCH, 1993  |g 40(1994), 3, Seite 287-317  |h Online-Ressource  |w (DE-627)320455696  |w (DE-600)2006630-2  |w (DE-576)090890388  |x 1521-3870  |7 nnas  |a Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees 
773 1 8 |g volume:40  |g year:1994  |g number:3  |g pages:287-317  |g extent:31  |a Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees 
856 4 0 |u https://doi.org/10.1002/malq.19940400302  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19940400302  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230531 
993 |a Article 
994 |a 1994 
998 |g 141551607  |a Ambos-Spies, Klaus  |m 141551607:Ambos-Spies, Klaus  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PA141551607  |e 110100PA141551607  |e 110000PA141551607  |e 110400PA141551607  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1847043038  |e 4327672378 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Ambos-Spies, Klaus","roleDisplay":"VerfasserIn","given":"Klaus","family":"Ambos-Spies"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Decheng, Ding","given":"Ding","family":"Decheng"}],"title":[{"title":"Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees","title_sort":"Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees"}],"recId":"1847043038","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 31.05.2023"],"name":{"displayForm":["Klaus Ambos-Spies, Ding Decheng"]},"id":{"eki":["1847043038"],"doi":["10.1002/malq.19940400302"]},"origin":[{"dateIssuedKey":"1994","dateIssuedDisp":"1994"}],"relHost":[{"title":[{"subtitle":"MLQ","title":"Mathematical logic quarterly","title_sort":"Mathematical logic quarterly"}],"part":{"text":"40(1994), 3, Seite 287-317","volume":"40","extent":"31","year":"1994","issue":"3","pages":"287-317"},"titleAlt":[{"title":"MLQ"}],"pubHistory":["Volume 39 (1993)-"],"language":["eng"],"recId":"320455696","disp":"Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degreesMathematical logic quarterly","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Fortsetzung der Druck-Ausgabe","Gesehen am 27.02.24"],"id":{"zdb":["2006630-2"],"eki":["320455696"],"doi":["10.1002/(ISSN)1521-3870"],"issn":["1521-3870"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg ; Leipzig ; Leipzig ; Berlin ; Heidelberg ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1993-","dateIssuedKey":"1993","publisher":"Wiley-VCH ; Johann Ambrosius Barth, Hüthig GmbH ; Johann Ambrosius Barth ; Edition Deutscher Verlag der Wissenschaften"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"31 S."}]} 
SRT |a AMBOSSPIESDISCONTINU1994