Discontinuity of cappings in the recursively enumerable degrees and strongly nonbranching degrees

We construct an r. e. degree a which possesses a greatest a-minimal pair b0, b1, i.e., r. e. degrees b0 and b1 such that b0, b1 < a, b0 ∩ b1 = a, and, for any other pair c0, c1 with these properties, c0 ≤ bi and c1 ≤ b1-i for some i ≤ 1. By extending this result, we show that there are strongly n...

Full description

Saved in:
Bibliographic Details
Main Authors: Ambos-Spies, Klaus (Author) , Decheng, Ding (Author)
Format: Article (Journal)
Language:English
Published: 1994
In: Mathematical logic quarterly
Year: 1994, Volume: 40, Issue: 3, Pages: 287-317
ISSN:1521-3870
DOI:10.1002/malq.19940400302
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/malq.19940400302
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19940400302
Get full text
Author Notes:Klaus Ambos-Spies, Ding Decheng
Description
Summary:We construct an r. e. degree a which possesses a greatest a-minimal pair b0, b1, i.e., r. e. degrees b0 and b1 such that b0, b1 < a, b0 ∩ b1 = a, and, for any other pair c0, c1 with these properties, c0 ≤ bi and c1 ≤ b1-i for some i ≤ 1. By extending this result, we show that there are strongly nonbranching degrees which are not strongly noncappable. Finally, by introducing a new genericity concept for r. e. sets, we prove a jump theorem for the strongly nonbranching and strongly noncappable r. e. degrees. Mathematics Subject Classification: 03D25.
Item Description:Gesehen am 31.05.2023
Physical Description:Online Resource
ISSN:1521-3870
DOI:10.1002/malq.19940400302