Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs

The nasal epithelium is an important target for drug delivery to the nose and secondary organs such as the brain via the olfactory bulb. For both topical and brain delivery, the targeting of specific nasal regions such as the olfactory epithelium (brain) is essential, yet challenging. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farnoud, Ali (VerfasserIn) , Tofighian, Hesam (VerfasserIn) , Baumann, Ingo (VerfasserIn) , Ahookhosh, Kaveh (VerfasserIn) , Pourmehran, Oveis (VerfasserIn) , Cui, Xinguang (VerfasserIn) , Heuveline, Vincent (VerfasserIn) , Song, Chen (VerfasserIn) , Vreugde, Sarah (VerfasserIn) , Wormald, Peter-John (VerfasserIn) , Menden, Michael (VerfasserIn) , Schmid, Otmar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 6 january 2023
In: Pharmaceuticals
Year: 2023, Jahrgang: 16, Heft: 1, Pages: 1-15
ISSN:1424-8247
DOI:10.3390/ph16010081
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/ph16010081
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/1424-8247/16/1/81
Volltext
Verfasserangaben:Ali Farnoud, Hesam Tofighian, Ingo Baumann, Kaveh Ahookhosh, Oveis Pourmehran, Xinguang Cui, Vincent Heuveline, Chen Song, Sarah Vreugde, Peter-John Wormald, Michael P. Menden and Otmar Schmid

MARC

LEADER 00000caa a2200000 c 4500
001 1847429653
003 DE-627
005 20230706204843.0
007 cr uuu---uuuuu
008 230605s2023 xx |||||o 00| ||eng c
024 7 |a 10.3390/ph16010081  |2 doi 
035 |a (DE-627)1847429653 
035 |a (DE-599)KXP1847429653 
035 |a (OCoLC)1389529851 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Farnoud, Ali  |e VerfasserIn  |0 (DE-588)1163758434  |0 (DE-627)102812113X  |0 (DE-576)508202450  |4 aut 
245 1 0 |a Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs  |c Ali Farnoud, Hesam Tofighian, Ingo Baumann, Kaveh Ahookhosh, Oveis Pourmehran, Xinguang Cui, Vincent Heuveline, Chen Song, Sarah Vreugde, Peter-John Wormald, Michael P. Menden and Otmar Schmid 
264 1 |c 6 january 2023 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.06.2023 
520 |a The nasal epithelium is an important target for drug delivery to the nose and secondary organs such as the brain via the olfactory bulb. For both topical and brain delivery, the targeting of specific nasal regions such as the olfactory epithelium (brain) is essential, yet challenging. In this study, a numerical model was developed to predict the regional dose as mass per surface area (for an inhaled mass of 2.5 mg), which is the biologically most relevant dose metric for drug delivery in the respiratory system. The role of aerosol diameter (particle diameter: 1 nm to 30 µm) and inhalation flow rate (4, 15 and 30 L/min) in optimal drug delivery to the vestibule, nasal valve, olfactory and nasopharynx is assessed. To obtain the highest doses in the olfactory region, we suggest aerosols with a diameter of 20 µm and a medium inlet air flow rate of 15 L/min. High deposition on the olfactory epithelium was also observed for nanoparticles below 1 nm, as was high residence time (slow flow rate of 4 L/min), but the very low mass of 1 nm nanoparticles is prohibitive for most therapeutic applications. Moreover, high flow rates (30 L/min) and larger micro-aerosols lead to highest doses in the vestibule and nasal valve regions. On the other hand, the highest drug doses in the nasopharynx are observed for nano-aerosol (1 nm) and fine microparticles (1-20 µm) with a relatively weak dependence on flow rate. Furthermore, using the 45 different inhalation scenarios generated by numerical models, different machine learning models with five-fold cross-validation are trained to predict the delivered dose and avoid partial differential equation solvers for future predictions. Random forest and gradient boosting models resulted in R2 scores of 0.89 and 0.96, respectively. The aerosol diameter and region of interest are the most important features affecting delivered dose, with an approximate importance of 42% and 47%, respectively. 
650 4 |a machine learning 
650 4 |a nanodrug delivery 
650 4 |a nasal drug delivery 
650 4 |a numerical modelling 
650 4 |a targeted drug delivery 
700 1 |a Tofighian, Hesam  |e VerfasserIn  |4 aut 
700 1 |a Baumann, Ingo  |d 1977-  |e VerfasserIn  |0 (DE-588)13336982X  |0 (DE-627)544029445  |0 (DE-576)275438732  |4 aut 
700 1 |a Ahookhosh, Kaveh  |e VerfasserIn  |4 aut 
700 1 |a Pourmehran, Oveis  |e VerfasserIn  |4 aut 
700 1 |a Cui, Xinguang  |e VerfasserIn  |0 (DE-588)1024144216  |0 (DE-627)719216885  |0 (DE-576)368005178  |4 aut 
700 1 |a Heuveline, Vincent  |d 1968-  |e VerfasserIn  |0 (DE-588)1046579266  |0 (DE-627)776691880  |0 (DE-576)399904727  |4 aut 
700 1 |a Song, Chen  |d 1988-  |e VerfasserIn  |0 (DE-588)1124811346  |0 (DE-627)879205520  |0 (DE-576)48315671X  |4 aut 
700 1 |a Vreugde, Sarah  |e VerfasserIn  |4 aut 
700 1 |a Wormald, Peter-John  |d 1959-  |e VerfasserIn  |0 (DE-588)129592897  |0 (DE-627)474746275  |0 (DE-576)297738704  |4 aut 
700 1 |a Menden, Michael  |e VerfasserIn  |0 (DE-588)1203168314  |0 (DE-627)1687989591  |4 aut 
700 1 |a Schmid, Otmar  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Pharmaceuticals  |d Basel : MDPI, 2004  |g 16(2023), 1 vom: Jan., Artikel-ID 81, Seite 1-15  |h Online-Ressource  |w (DE-627)491437528  |w (DE-600)2193542-7  |w (DE-576)281279470  |x 1424-8247  |7 nnas  |a Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs 
773 1 8 |g volume:16  |g year:2023  |g number:1  |g month:01  |g elocationid:81  |g pages:1-15  |g extent:14  |a Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs 
856 4 0 |u https://doi.org/10.3390/ph16010081  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/1424-8247/16/1/81  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230605 
993 |a Article 
994 |a 2023 
998 |g 1124811346  |a Song, Chen  |m 1124811346:Song, Chen  |d 700000  |d 708000  |e 700000PS1124811346  |e 708000PS1124811346  |k 0/700000/  |k 1/700000/708000/  |p 8 
998 |g 1046579266  |a Heuveline, Vincent  |m 1046579266:Heuveline, Vincent  |d 700000  |d 708000  |e 700000PH1046579266  |e 708000PH1046579266  |k 0/700000/  |k 1/700000/708000/  |p 7 
998 |g 13336982X  |a Baumann, Ingo  |m 13336982X:Baumann, Ingo  |d 910000  |d 911000  |d 50000  |e 910000PB13336982X  |e 911000PB13336982X  |e 50000PB13336982X  |k 0/910000/  |k 1/910000/911000/  |k 0/50000/  |p 3 
999 |a KXP-PPN1847429653  |e 4329422816 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1847429653"],"doi":["10.3390/ph16010081"]},"relHost":[{"title":[{"title":"Pharmaceuticals","title_sort":"Pharmaceuticals"}],"disp":"Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugsPharmaceuticals","recId":"491437528","pubHistory":["1.2004 -"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"volume":"16","issue":"1","extent":"14","text":"16(2023), 1 vom: Jan., Artikel-ID 81, Seite 1-15","pages":"1-15","year":"2023"},"name":{"displayForm":["Molecular Diversity Preservation International"]},"note":["Gesehen am 05.09.2011"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2193542-7"],"eki":["491437528"],"issn":["1424-8247"]},"origin":[{"dateIssuedDisp":"2004-","dateIssuedKey":"2004","publisher":"MDPI","publisherPlace":"Basel"}]}],"origin":[{"dateIssuedDisp":"6 january 2023","dateIssuedKey":"2023"}],"note":["Gesehen am 05.06.2023"],"person":[{"roleDisplay":"VerfasserIn","family":"Farnoud","given":"Ali","role":"aut","display":"Farnoud, Ali"},{"family":"Tofighian","roleDisplay":"VerfasserIn","given":"Hesam","display":"Tofighian, Hesam","role":"aut"},{"given":"Ingo","role":"aut","display":"Baumann, Ingo","roleDisplay":"VerfasserIn","family":"Baumann"},{"display":"Ahookhosh, Kaveh","role":"aut","given":"Kaveh","roleDisplay":"VerfasserIn","family":"Ahookhosh"},{"given":"Oveis","display":"Pourmehran, Oveis","role":"aut","family":"Pourmehran","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Cui","given":"Xinguang","display":"Cui, Xinguang","role":"aut"},{"roleDisplay":"VerfasserIn","family":"Heuveline","display":"Heuveline, Vincent","role":"aut","given":"Vincent"},{"roleDisplay":"VerfasserIn","family":"Song","display":"Song, Chen","role":"aut","given":"Chen"},{"roleDisplay":"VerfasserIn","family":"Vreugde","role":"aut","display":"Vreugde, Sarah","given":"Sarah"},{"family":"Wormald","roleDisplay":"VerfasserIn","display":"Wormald, Peter-John","role":"aut","given":"Peter-John"},{"family":"Menden","roleDisplay":"VerfasserIn","display":"Menden, Michael","role":"aut","given":"Michael"},{"family":"Schmid","roleDisplay":"VerfasserIn","given":"Otmar","role":"aut","display":"Schmid, Otmar"}],"physDesc":[{"extent":"14 S.","noteIll":"Illustrationen"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"name":{"displayForm":["Ali Farnoud, Hesam Tofighian, Ingo Baumann, Kaveh Ahookhosh, Oveis Pourmehran, Xinguang Cui, Vincent Heuveline, Chen Song, Sarah Vreugde, Peter-John Wormald, Michael P. Menden and Otmar Schmid"]},"title":[{"title":"Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs","title_sort":"Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs"}],"recId":"1847429653"} 
SRT |a FARNOUDALINUMERICALA6202