The Einstein relation for the displacement of a test particle in a random environment

Consider a stochastic system evolving in time, in which one observes the displacement of a tagged particle, X(t). Assume that this displacement process converges weakly to d-dimensional centered Brownian motion with covariance D, when space and time are appropriately scaled: Xε(t) = εX(ε−2t), ε→0. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lebowitz, Joel Louis (VerfasserIn) , Rost, Hermann (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1994
In: Stochastic processes and their applications
Year: 1994, Jahrgang: 54, Heft: 2, Pages: 183-196
ISSN:1879-209X
DOI:10.1016/0304-4149(94)00015-8
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/0304-4149(94)00015-8
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/0304414994000158
Volltext
Verfasserangaben:Joel L. Lebowitz, Hermann Rost

MARC

LEADER 00000caa a2200000 c 4500
001 1847659306
003 DE-627
005 20230710182253.0
007 cr uuu---uuuuu
008 230607s1994 xx |||||o 00| ||eng c
024 7 |a 10.1016/0304-4149(94)00015-8  |2 doi 
035 |a (DE-627)1847659306 
035 |a (DE-599)KXP1847659306 
035 |a (OCoLC)1389826596 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lebowitz, Joel Louis  |d 1930-  |e VerfasserIn  |0 (DE-588)118107771  |0 (DE-627)079247482  |0 (DE-576)161934137  |4 aut 
245 1 4 |a The Einstein relation for the displacement of a test particle in a random environment  |c Joel L. Lebowitz, Hermann Rost 
264 1 |c 1994 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Elektronische Reproduktion der Druck-Ausgabe 25. März 2002 
500 |a Gesehen am 07.06.2023 
520 |a Consider a stochastic system evolving in time, in which one observes the displacement of a tagged particle, X(t). Assume that this displacement process converges weakly to d-dimensional centered Brownian motion with covariance D, when space and time are appropriately scaled: Xε(t) = εX(ε−2t), ε→0. Now perturb the process by putting a small “force” εa on the test particle. We prove on three different examples that under previous scaling the perturbed process converges to Brownian motion having the same covariance D, but an additional drift of the form M · a. We show that M, the “mobility” of the test particle, and D are related to each other by the Einstein formula M=(12β)D where β = 1/kT(T being temperature and k Boltzmann's constant) is defined in such a way that the reversible state for the modified dynamics gets the correct Boltzmann factor. The method used to verify (1) is the calculus of Radon-Nikodym derivatives of measures in the space of trajectories (Girsanov's formula). Scaling simultaneously force and displacement has also a technical advantage: there is no need to show existence, under the perturbed evolution, of an invariant measure for the process “environment seen from the test particle” such that it is equivalent to the invariant measure under the unperturbed evolution. 
650 4 |a Boltzmann factor 
650 4 |a Central limit theorem 
650 4 |a Einstein relation 
650 4 |a Girsanov formula 
650 4 |a Interacting particle system 
650 4 |a Random environment 
700 1 |a Rost, Hermann  |d 1940-2012  |e VerfasserIn  |0 (DE-588)17234915X  |0 (DE-627)697293769  |0 (DE-576)133214796  |4 aut 
773 0 8 |i Enthalten in  |t Stochastic processes and their applications  |d Amsterdam [u.a.] : Elsevier, 1973  |g 54(1994), 2, Seite 183-196  |h Online-Ressource  |w (DE-627)266886221  |w (DE-600)1468492-5  |w (DE-576)07942015X  |x 1879-209X  |7 nnas  |a The Einstein relation for the displacement of a test particle in a random environment 
773 1 8 |g volume:54  |g year:1994  |g number:2  |g pages:183-196  |g extent:14  |a The Einstein relation for the displacement of a test particle in a random environment 
856 4 0 |u https://doi.org/10.1016/0304-4149(94)00015-8  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/0304414994000158  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230607 
993 |a Article 
994 |a 1994 
998 |g 17234915X  |a Rost, Hermann  |m 17234915X:Rost, Hermann  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR17234915X  |e 110200PR17234915X  |e 110000PR17234915X  |e 110400PR17234915X  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1847659306  |e 4330061600 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Lebowitz, Joel Louis","roleDisplay":"VerfasserIn","given":"Joel Louis","family":"Lebowitz"},{"given":"Hermann","family":"Rost","role":"aut","display":"Rost, Hermann","roleDisplay":"VerfasserIn"}],"title":[{"title":"The Einstein relation for the displacement of a test particle in a random environment","title_sort":"Einstein relation for the displacement of a test particle in a random environment"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Elektronische Reproduktion der Druck-Ausgabe 25. März 2002","Gesehen am 07.06.2023"],"language":["eng"],"recId":"1847659306","name":{"displayForm":["Joel L. Lebowitz, Hermann Rost"]},"origin":[{"dateIssuedKey":"1994","dateIssuedDisp":"1994"}],"id":{"eki":["1847659306"],"doi":["10.1016/0304-4149(94)00015-8"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1973-","publisher":"Elsevier","dateIssuedKey":"1973","publisherPlace":"Amsterdam [u.a.]"}],"id":{"eki":["266886221"],"zdb":["1468492-5"],"issn":["1879-209X"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Stochastic processes and their applications","title_sort":"Stochastic processes and their applications"}],"pubHistory":["Volume 1, issue 1 (January 1973)-"],"part":{"extent":"14","volume":"54","text":"54(1994), 2, Seite 183-196","issue":"2","pages":"183-196","year":"1994"},"note":["Gesehen am 12.07.24"],"disp":"The Einstein relation for the displacement of a test particle in a random environmentStochastic processes and their applications","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"266886221","language":["eng"]}]} 
SRT |a LEBOWITZJOEINSTEINRE1994