Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes

The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kermani, Fatemeh (VerfasserIn) , Mosqueira, Matias (VerfasserIn) , Peters, Kyra (VerfasserIn) , Lemma, Enrico D. (VerfasserIn) , Rapti, Kleopatra (VerfasserIn) , Grimm, Dirk (VerfasserIn) , Bastmeyer, Martin (VerfasserIn) , Laugsch, Magdalena (VerfasserIn) , Hecker, Markus (VerfasserIn) , Ullrich, Nina D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 March 2023
In: Basic research in cardiology
Year: 2023, Jahrgang: 118, Pages: 1-16
ISSN:1435-1803
DOI:10.1007/s00395-023-00984-5
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00395-023-00984-5
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00395-023-00984-5
Volltext
Verfasserangaben:Fatemeh Kermani, Matias Mosqueira, Kyra Peters, Enrico D. Lemma, Kleopatra Rapti, Dirk Grimm, Martin Bastmeyer, Magdalena Laugsch, Markus Hecker, Nina D. Ullrich
Beschreibung
Zusammenfassung:The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Beschreibung:Gesehen am 12.06.2023
Beschreibung:Online Resource
ISSN:1435-1803
DOI:10.1007/s00395-023-00984-5