A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps

Saved in:
Bibliographic Details
Main Author: Bartsch, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 1993
In: Mathematische Zeitschrift
Year: 1993, Volume: 212, Issue: 1, Pages: 285-292
ISSN:1432-1823
DOI:10.1007/BF02571658
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/BF02571658
Get full text
Author Notes:Thomas Bartsch

MARC

LEADER 00000caa a2200000 c 4500
001 1848814518
003 DE-627
005 20230710183957.0
007 cr uuu---uuuuu
008 230612s1993 xx |||||o 00| ||eng c
024 7 |a 10.1007/BF02571658  |2 doi 
035 |a (DE-627)1848814518 
035 |a (DE-599)KXP1848814518 
035 |a (OCoLC)1389827958 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Bartsch, Thomas  |e VerfasserIn  |0 (DE-588)1013584821  |0 (DE-627)705053520  |0 (DE-576)347368549  |4 aut 
245 1 2 |a A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps  |c Thomas Bartsch 
264 1 |c 1993 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.06.2023 
650 4 |a Degree Formula 
650 4 |a Fixed Point Index 
650 4 |a Lens Space 
650 4 |a Normed Linear Space 
650 4 |a Open Invariant Subset 
773 0 8 |i Enthalten in  |t Mathematische Zeitschrift  |d Berlin : Springer, 1918  |g 212(1993), 1, Seite 285-292  |h Online-Ressource  |w (DE-627)254630812  |w (DE-600)1462134-4  |w (DE-576)074529722  |x 1432-1823  |7 nnas  |a A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps 
773 1 8 |g volume:212  |g year:1993  |g number:1  |g pages:285-292  |g extent:8  |a A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps 
856 4 0 |u https://doi.org/10.1007/BF02571658  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230612 
993 |a Article 
994 |a 1993 
998 |g 1013584821  |a Bartsch, Thomas  |m 1013584821:Bartsch, Thomas  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PB1013584821  |e 110100PB1013584821  |e 110000PB1013584821  |e 110400PB1013584821  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1848814518  |e 4331481557 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"8 S."}],"relHost":[{"disp":"A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant mapsMathematische Zeitschrift","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.12.05"],"language":["eng"],"recId":"254630812","pubHistory":["1.1918 -"],"part":{"extent":"8","volume":"212","text":"212(1993), 1, Seite 285-292","issue":"1","pages":"285-292","year":"1993"},"title":[{"title_sort":"Mathematische Zeitschrift","title":"Mathematische Zeitschrift"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1918","publisher":"Springer","dateIssuedDisp":"1918-"}],"id":{"issn":["1432-1823"],"zdb":["1462134-4"],"eki":["254630812"]}}],"name":{"displayForm":["Thomas Bartsch"]},"origin":[{"dateIssuedDisp":"1993","dateIssuedKey":"1993"}],"id":{"doi":["10.1007/BF02571658"],"eki":["1848814518"]},"note":["Gesehen am 12.06.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1848814518","person":[{"roleDisplay":"VerfasserIn","display":"Bartsch, Thomas","role":"aut","family":"Bartsch","given":"Thomas"}],"title":[{"title_sort":"simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps","title":"A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps"}]} 
SRT |a BARTSCHTHOSIMPLEPROO1993