A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
1993
|
| In: |
Mathematische Zeitschrift
Year: 1993, Volume: 212, Issue: 1, Pages: 285-292 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/BF02571658 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/BF02571658 |
| Author Notes: | Thomas Bartsch |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1848814518 | ||
| 003 | DE-627 | ||
| 005 | 20230710183957.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230612s1993 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/BF02571658 |2 doi | |
| 035 | |a (DE-627)1848814518 | ||
| 035 | |a (DE-599)KXP1848814518 | ||
| 035 | |a (OCoLC)1389827958 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Bartsch, Thomas |e VerfasserIn |0 (DE-588)1013584821 |0 (DE-627)705053520 |0 (DE-576)347368549 |4 aut | |
| 245 | 1 | 2 | |a A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps |c Thomas Bartsch |
| 264 | 1 | |c 1993 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 12.06.2023 | ||
| 650 | 4 | |a Degree Formula | |
| 650 | 4 | |a Fixed Point Index | |
| 650 | 4 | |a Lens Space | |
| 650 | 4 | |a Normed Linear Space | |
| 650 | 4 | |a Open Invariant Subset | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Berlin : Springer, 1918 |g 212(1993), 1, Seite 285-292 |h Online-Ressource |w (DE-627)254630812 |w (DE-600)1462134-4 |w (DE-576)074529722 |x 1432-1823 |7 nnas |a A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps |
| 773 | 1 | 8 | |g volume:212 |g year:1993 |g number:1 |g pages:285-292 |g extent:8 |a A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps |
| 856 | 4 | 0 | |u https://doi.org/10.1007/BF02571658 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230612 | ||
| 993 | |a Article | ||
| 994 | |a 1993 | ||
| 998 | |g 1013584821 |a Bartsch, Thomas |m 1013584821:Bartsch, Thomas |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PB1013584821 |e 110100PB1013584821 |e 110000PB1013584821 |e 110400PB1013584821 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1848814518 |e 4331481557 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"8 S."}],"relHost":[{"disp":"A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant mapsMathematische Zeitschrift","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.12.05"],"language":["eng"],"recId":"254630812","pubHistory":["1.1918 -"],"part":{"extent":"8","volume":"212","text":"212(1993), 1, Seite 285-292","issue":"1","pages":"285-292","year":"1993"},"title":[{"title_sort":"Mathematische Zeitschrift","title":"Mathematische Zeitschrift"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1918","publisher":"Springer","dateIssuedDisp":"1918-"}],"id":{"issn":["1432-1823"],"zdb":["1462134-4"],"eki":["254630812"]}}],"name":{"displayForm":["Thomas Bartsch"]},"origin":[{"dateIssuedDisp":"1993","dateIssuedKey":"1993"}],"id":{"doi":["10.1007/BF02571658"],"eki":["1848814518"]},"note":["Gesehen am 12.06.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1848814518","person":[{"roleDisplay":"VerfasserIn","display":"Bartsch, Thomas","role":"aut","family":"Bartsch","given":"Thomas"}],"title":[{"title_sort":"simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps","title":"A simple proof of the degree formula for (Z/p)-equivariant maps/p)-equivariant maps"}]} | ||
| SRT | |a BARTSCHTHOSIMPLEPROO1993 | ||