Hamiltonian flows for pseudo-Anosov mapping classes
For a given pseudo-Anosov homeomorphism q) of a closed surface S, the action of q) on the Teichmuller space T (S) preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions T (S) R whose symplectic gradients generate autonomous Hamiltonian flows that coincide...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 May 2023
|
| In: |
Commentarii mathematici Helvetici
Year: 2023, Jahrgang: 98, Heft: 1, Pages: 135-194 |
| ISSN: | 1420-8946 |
| DOI: | 10.4171/CMH/551 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/CMH/551 Verlag, lizenzpflichtig, Volltext: https://ems.press/journals/cmh/articles/10799725 |
| Verfasserangaben: | James Farre |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1851063846 | ||
| 003 | DE-627 | ||
| 005 | 20230706202036.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230627s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.4171/CMH/551 |2 doi | |
| 035 | |a (DE-627)1851063846 | ||
| 035 | |a (DE-599)KXP1851063846 | ||
| 035 | |a (OCoLC)1389528050 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Farre, James |e VerfasserIn |0 (DE-588)1294105167 |0 (DE-627)185106477X |4 aut | |
| 245 | 1 | 0 | |a Hamiltonian flows for pseudo-Anosov mapping classes |c James Farre |
| 264 | 1 | |c 24 May 2023 | |
| 300 | |a 60 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.06.2023 | ||
| 520 | |a For a given pseudo-Anosov homeomorphism q) of a closed surface S, the action of q) on the Teichmuller space T (S) preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions T (S) R whose symplectic gradients generate autonomous Hamiltonian flows that coincide with the action of q) at time one. We compute the Poisson bracket between these two functions. This amounts to computing the variation of length of a Holder cocycle on one lamination along a shear vector field defined by another. For a measurably generic set of laminations, we prove that the variation of length is expressed as the cosine of the angle between the two laminations integrated against the product Holder distribution, generalizing a result of Kerckhoff. We also obtain rates of convergence for the supports of germs of differentiable paths of measured laminations in the Hausdorff metric on a hyperbolic surface, which may be of independent interest. | ||
| 650 | 4 | |a dynamics | |
| 650 | 4 | |a geometry | |
| 650 | 4 | |a laminations | |
| 650 | 4 | |a pseudo-Anosov mapping classes | |
| 650 | 4 | |a Symplectic geometry | |
| 650 | 4 | |a Teichmuller space | |
| 650 | 4 | |a weil-petersson | |
| 773 | 0 | 8 | |i Enthalten in |t Commentarii mathematici Helvetici |d Zürich : EMS Publ. House, 1929 |g 98(2023), 1 vom: Mai, Seite 135-194 |h Online-Ressource |w (DE-627)253721504 |w (DE-600)1458917-5 |w (DE-576)072372176 |x 1420-8946 |7 nnas |a Hamiltonian flows for pseudo-Anosov mapping classes |
| 773 | 1 | 8 | |g volume:98 |g year:2023 |g number:1 |g month:05 |g pages:135-194 |g extent:60 |a Hamiltonian flows for pseudo-Anosov mapping classes |
| 856 | 4 | 0 | |u https://doi.org/10.4171/CMH/551 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://ems.press/journals/cmh/articles/10799725 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230627 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1294105167 |a Farre, James |m 1294105167:Farre, James |d 110000 |d 110400 |e 110000PF1294105167 |e 110400PF1294105167 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1851063846 |e 4343910865 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["James Farre"]},"origin":[{"dateIssuedDisp":"24 May 2023","dateIssuedKey":"2023"}],"id":{"doi":["10.4171/CMH/551"],"eki":["1851063846"]},"physDesc":[{"extent":"60 S."}],"relHost":[{"pubHistory":["1.1929 -"],"part":{"text":"98(2023), 1 vom: Mai, Seite 135-194","volume":"98","extent":"60","year":"2023","pages":"135-194","issue":"1"},"titleAlt":[{"title":"CMH"}],"disp":"Hamiltonian flows for pseudo-Anosov mapping classesCommentarii mathematici Helvetici","note":["Gesehen am 01.09.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"253721504","language":["ger"],"title":[{"title_sort":"Commentarii mathematici Helvetici","title":"Commentarii mathematici Helvetici","subtitle":"CMH ; eine Zeitschrift der Schweizerischen Mathematischen Gesellschaft"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Zürich ; Basel","dateIssuedDisp":"1929-","dateIssuedKey":"1929","publisher":"EMS Publ. House ; Birkhäuser"}],"id":{"issn":["1420-8946"],"zdb":["1458917-5"],"eki":["253721504"],"doi":["10.4171/CMH"]}}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Farre, James","given":"James","family":"Farre"}],"title":[{"title_sort":"Hamiltonian flows for pseudo-Anosov mapping classes","title":"Hamiltonian flows for pseudo-Anosov mapping classes"}],"note":["Gesehen am 27.06.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1851063846"} | ||
| SRT | |a FARREJAMESHAMILTONIA2420 | ||