Hamiltonian flows for pseudo-Anosov mapping classes

For a given pseudo-Anosov homeomorphism q) of a closed surface S, the action of q) on the Teichmuller space T (S) preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions T (S) R whose symplectic gradients generate autonomous Hamiltonian flows that coincide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Farre, James (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 May 2023
In: Commentarii mathematici Helvetici
Year: 2023, Jahrgang: 98, Heft: 1, Pages: 135-194
ISSN:1420-8946
DOI:10.4171/CMH/551
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/CMH/551
Verlag, lizenzpflichtig, Volltext: https://ems.press/journals/cmh/articles/10799725
Volltext
Verfasserangaben:James Farre

MARC

LEADER 00000caa a2200000 c 4500
001 1851063846
003 DE-627
005 20230706202036.0
007 cr uuu---uuuuu
008 230627s2023 xx |||||o 00| ||eng c
024 7 |a 10.4171/CMH/551  |2 doi 
035 |a (DE-627)1851063846 
035 |a (DE-599)KXP1851063846 
035 |a (OCoLC)1389528050 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Farre, James  |e VerfasserIn  |0 (DE-588)1294105167  |0 (DE-627)185106477X  |4 aut 
245 1 0 |a Hamiltonian flows for pseudo-Anosov mapping classes  |c James Farre 
264 1 |c 24 May 2023 
300 |a 60 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.06.2023 
520 |a For a given pseudo-Anosov homeomorphism q) of a closed surface S, the action of q) on the Teichmuller space T (S) preserves the Weil-Petersson symplectic form. We give explicit formulae for two invariant functions T (S) R whose symplectic gradients generate autonomous Hamiltonian flows that coincide with the action of q) at time one. We compute the Poisson bracket between these two functions. This amounts to computing the variation of length of a Holder cocycle on one lamination along a shear vector field defined by another. For a measurably generic set of laminations, we prove that the variation of length is expressed as the cosine of the angle between the two laminations integrated against the product Holder distribution, generalizing a result of Kerckhoff. We also obtain rates of convergence for the supports of germs of differentiable paths of measured laminations in the Hausdorff metric on a hyperbolic surface, which may be of independent interest. 
650 4 |a dynamics 
650 4 |a geometry 
650 4 |a laminations 
650 4 |a pseudo-Anosov mapping classes 
650 4 |a Symplectic geometry 
650 4 |a Teichmuller space 
650 4 |a weil-petersson 
773 0 8 |i Enthalten in  |t Commentarii mathematici Helvetici  |d Zürich : EMS Publ. House, 1929  |g 98(2023), 1 vom: Mai, Seite 135-194  |h Online-Ressource  |w (DE-627)253721504  |w (DE-600)1458917-5  |w (DE-576)072372176  |x 1420-8946  |7 nnas  |a Hamiltonian flows for pseudo-Anosov mapping classes 
773 1 8 |g volume:98  |g year:2023  |g number:1  |g month:05  |g pages:135-194  |g extent:60  |a Hamiltonian flows for pseudo-Anosov mapping classes 
856 4 0 |u https://doi.org/10.4171/CMH/551  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://ems.press/journals/cmh/articles/10799725  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230627 
993 |a Article 
994 |a 2023 
998 |g 1294105167  |a Farre, James  |m 1294105167:Farre, James  |d 110000  |d 110400  |e 110000PF1294105167  |e 110400PF1294105167  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1851063846  |e 4343910865 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["James Farre"]},"origin":[{"dateIssuedDisp":"24 May 2023","dateIssuedKey":"2023"}],"id":{"doi":["10.4171/CMH/551"],"eki":["1851063846"]},"physDesc":[{"extent":"60 S."}],"relHost":[{"pubHistory":["1.1929 -"],"part":{"text":"98(2023), 1 vom: Mai, Seite 135-194","volume":"98","extent":"60","year":"2023","pages":"135-194","issue":"1"},"titleAlt":[{"title":"CMH"}],"disp":"Hamiltonian flows for pseudo-Anosov mapping classesCommentarii mathematici Helvetici","note":["Gesehen am 01.09.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"253721504","language":["ger"],"title":[{"title_sort":"Commentarii mathematici Helvetici","title":"Commentarii mathematici Helvetici","subtitle":"CMH ; eine Zeitschrift der Schweizerischen Mathematischen Gesellschaft"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Zürich ; Basel","dateIssuedDisp":"1929-","dateIssuedKey":"1929","publisher":"EMS Publ. House ; Birkhäuser"}],"id":{"issn":["1420-8946"],"zdb":["1458917-5"],"eki":["253721504"],"doi":["10.4171/CMH"]}}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Farre, James","given":"James","family":"Farre"}],"title":[{"title_sort":"Hamiltonian flows for pseudo-Anosov mapping classes","title":"Hamiltonian flows for pseudo-Anosov mapping classes"}],"note":["Gesehen am 27.06.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1851063846"} 
SRT |a FARREJAMESHAMILTONIA2420