Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles
In 2019, Letzter confirmed a conjecture of Balogh, Barát, Gerbner, Gyárfás and Sárközy, proving that every large 222-edge-coloured graph GGG on nnn vertices with minimum degree at least 3n/43n/43n/4 can be partitioned into two monochromatic cycles of different colours. Here, we propose a weaker...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
May 5, 2023
|
| In: |
The electronic journal of combinatorics
Year: 2023, Jahrgang: 30, Heft: 2 |
| ISSN: | 1077-8926 |
| DOI: | 10.37236/11052 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.37236/11052 Verlag, lizenzpflichtig, Volltext: https://www.combinatorics.org/ojs/index.php/eljc/article/view/v30i2p18 |
| Verfasserangaben: | Patrick Arras |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1851070559 | ||
| 003 | DE-627 | ||
| 005 | 20230706202007.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230627s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.37236/11052 |2 doi | |
| 035 | |a (DE-627)1851070559 | ||
| 035 | |a (DE-599)KXP1851070559 | ||
| 035 | |a (OCoLC)1389527948 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Arras, Patrick |e VerfasserIn |0 (DE-588)1294111302 |0 (DE-627)1851070958 |4 aut | |
| 245 | 1 | 0 | |a Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles |c Patrick Arras |
| 264 | 1 | |c May 5, 2023 | |
| 300 | |a 1-31$t31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.06.2023 | ||
| 520 | |a In 2019, Letzter confirmed a conjecture of Balogh, Barát, Gerbner, Gyárfás and Sárközy, proving that every large 222-edge-coloured graph GGG on nnn vertices with minimum degree at least 3n/43n/43n/4 can be partitioned into two monochromatic cycles of different colours. Here, we propose a weaker condition on the degree sequence of GGG to also guarantee such a partition and prove an approximate version. This resembles a similar generalisation to an Ore-type condition achieved by Barát and Sárközy. - Continuing work by Allen, Böttcher, Lang, Skokan and Stein, we also show that if deg(u)+deg(v)≥4n/3+o(n)deg(u)+deg(v)≥4n/3+o(n)\operatorname{deg}(u) + \operatorname{deg}(v) \geq 4n/3 + o(n) holds for all non-adjacent vertices u,v∈V(G)u,v∈V(G)u,v \in V(G), then all but o(n)o(n)o(n) vertices can be partitioned into three monochromatic cycles. | ||
| 773 | 0 | 8 | |i Enthalten in |t The electronic journal of combinatorics |d [Madralin] : EMIS ELibEMS, 1994 |g 30(2023), 2 vom: Mai, Artikel-ID P2.18 |w (DE-627)312211775 |w (DE-600)2010998-2 |w (DE-576)281192707 |x 1077-8926 |7 nnas |a Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles |
| 773 | 1 | 8 | |g volume:30 |g year:2023 |g number:2 |g month:05 |g elocationid:P2.18 |g extent:1-31$t31 |a Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles |
| 856 | 4 | 0 | |u https://doi.org/10.37236/11052 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.combinatorics.org/ojs/index.php/eljc/article/view/v30i2p18 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230627 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1294111302 |a Arras, Patrick |m 1294111302:Arras, Patrick |d 110000 |d 110300 |e 110000PA1294111302 |e 110300PA1294111302 |k 0/110000/ |k 1/110000/110300/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1851070559 |e 4343925404 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.37236/11052"],"eki":["1851070559"]},"physDesc":[{"extent":"1-31$t31 S."}],"title":[{"title_sort":"Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles","title":"Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"May 5, 2023","dateIssuedKey":"2023"}],"relHost":[{"language":["eng"],"part":{"volume":"30","year":"2023","issue":"2","extent":"1-31$t31","text":"30(2023), 2 vom: Mai, Artikel-ID P2.18"},"recId":"312211775","pubHistory":["1.1994 -"],"note":["Gesehen am 01.10.20"],"title":[{"title_sort":"electronic journal of combinatorics","title":"The electronic journal of combinatorics"}],"disp":"Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cyclesThe electronic journal of combinatorics","type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["2010998-2"],"issn":["1077-8926"],"eki":["312211775"]},"origin":[{"publisherPlace":"[Madralin]","dateIssuedKey":"1994","dateIssuedDisp":"1994-","publisher":"EMIS ELibEMS"}]}],"language":["eng"],"name":{"displayForm":["Patrick Arras"]},"note":["Gesehen am 27.06.2023"],"recId":"1851070559","person":[{"display":"Arras, Patrick","given":"Patrick","family":"Arras","role":"aut"}]} | ||
| SRT | |a ARRASPATRIOREANDPOSA5202 | ||