Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles

In 2019, Letzter confirmed a conjecture of Balogh, Barát, Gerbner, Gyárfás and Sárközy, proving that every large 222-edge-coloured graph GGG on nnn vertices with minimum degree at least 3n/43n/43n/4 can be partitioned into two monochromatic cycles of different colours. Here, we propose a weaker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Arras, Patrick (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 5, 2023
In: The electronic journal of combinatorics
Year: 2023, Jahrgang: 30, Heft: 2
ISSN:1077-8926
DOI:10.37236/11052
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.37236/11052
Verlag, lizenzpflichtig, Volltext: https://www.combinatorics.org/ojs/index.php/eljc/article/view/v30i2p18
Volltext
Verfasserangaben:Patrick Arras

MARC

LEADER 00000caa a2200000 c 4500
001 1851070559
003 DE-627
005 20230706202007.0
007 cr uuu---uuuuu
008 230627s2023 xx |||||o 00| ||eng c
024 7 |a 10.37236/11052  |2 doi 
035 |a (DE-627)1851070559 
035 |a (DE-599)KXP1851070559 
035 |a (OCoLC)1389527948 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Arras, Patrick  |e VerfasserIn  |0 (DE-588)1294111302  |0 (DE-627)1851070958  |4 aut 
245 1 0 |a Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles  |c Patrick Arras 
264 1 |c May 5, 2023 
300 |a 1-31$t31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.06.2023 
520 |a In 2019, Letzter confirmed a conjecture of Balogh, Barát, Gerbner, Gyárfás and Sárközy, proving that every large 222-edge-coloured graph GGG on nnn vertices with minimum degree at least 3n/43n/43n/4 can be partitioned into two monochromatic cycles of different colours. Here, we propose a weaker condition on the degree sequence of GGG to also guarantee such a partition and prove an approximate version. This resembles a similar generalisation to an Ore-type condition achieved by Barát and Sárközy. - Continuing work by Allen, Böttcher, Lang, Skokan and Stein, we also show that if deg(u)+deg(v)≥4n/3+o(n)deg⁡(u)+deg⁡(v)≥4n/3+o(n)\operatorname{deg}(u) + \operatorname{deg}(v) \geq 4n/3 + o(n) holds for all non-adjacent vertices u,v∈V(G)u,v∈V(G)u,v \in V(G), then all but o(n)o(n)o(n) vertices can be partitioned into three monochromatic cycles. 
773 0 8 |i Enthalten in  |t The electronic journal of combinatorics  |d [Madralin] : EMIS ELibEMS, 1994  |g 30(2023), 2 vom: Mai, Artikel-ID P2.18  |w (DE-627)312211775  |w (DE-600)2010998-2  |w (DE-576)281192707  |x 1077-8926  |7 nnas  |a Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles 
773 1 8 |g volume:30  |g year:2023  |g number:2  |g month:05  |g elocationid:P2.18  |g extent:1-31$t31  |a Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles 
856 4 0 |u https://doi.org/10.37236/11052  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.combinatorics.org/ojs/index.php/eljc/article/view/v30i2p18  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230627 
993 |a Article 
994 |a 2023 
998 |g 1294111302  |a Arras, Patrick  |m 1294111302:Arras, Patrick  |d 110000  |d 110300  |e 110000PA1294111302  |e 110300PA1294111302  |k 0/110000/  |k 1/110000/110300/  |p 1  |x j  |y j 
999 |a KXP-PPN1851070559  |e 4343925404 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.37236/11052"],"eki":["1851070559"]},"physDesc":[{"extent":"1-31$t31 S."}],"title":[{"title_sort":"Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles","title":"Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cycles"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"May 5, 2023","dateIssuedKey":"2023"}],"relHost":[{"language":["eng"],"part":{"volume":"30","year":"2023","issue":"2","extent":"1-31$t31","text":"30(2023), 2 vom: Mai, Artikel-ID P2.18"},"recId":"312211775","pubHistory":["1.1994 -"],"note":["Gesehen am 01.10.20"],"title":[{"title_sort":"electronic journal of combinatorics","title":"The electronic journal of combinatorics"}],"disp":"Ore- and Pósa-type conditions for partitioning 2-edge-coloured graphs into monochromatic cyclesThe electronic journal of combinatorics","type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["2010998-2"],"issn":["1077-8926"],"eki":["312211775"]},"origin":[{"publisherPlace":"[Madralin]","dateIssuedKey":"1994","dateIssuedDisp":"1994-","publisher":"EMIS ELibEMS"}]}],"language":["eng"],"name":{"displayForm":["Patrick Arras"]},"note":["Gesehen am 27.06.2023"],"recId":"1851070559","person":[{"display":"Arras, Patrick","given":"Patrick","family":"Arras","role":"aut"}]} 
SRT |a ARRASPATRIOREANDPOSA5202