Finite element approximation of dielectrophoretic force driven flow problems

In this paper, we propose a full discretization scheme for the instationary thermal-electro-hydrodynamic (TEHD) Boussinesq equations. These equations model the dynamics of a non-isothermal, dielectric fluid under the influence of a dielectrophoretic (DEP) force. Our scheme combines an H1-conformal f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gerstner, Philipp (VerfasserIn) , Heuveline, Vincent (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 May 2023
In: Mathematical modelling and numerical analysis
Year: 2023, Jahrgang: 57, Heft: 3, Pages: 1691-1729
ISSN:2804-7214
DOI:10.1051/m2an/2023031
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1051/m2an/2023031
Verlag, kostenfrei, Volltext: https://www.esaim-m2an.org/articles/m2an/abs/2023/03/m2an220124/m2an220124.html
Volltext
Verfasserangaben:Philipp Gerstner and Vincent Heuveline
Beschreibung
Zusammenfassung:In this paper, we propose a full discretization scheme for the instationary thermal-electro-hydrodynamic (TEHD) Boussinesq equations. These equations model the dynamics of a non-isothermal, dielectric fluid under the influence of a dielectrophoretic (DEP) force. Our scheme combines an H1-conformal finite element method for spatial discretization with a backward differentiation formula (BDF) for time stepping. The resulting scheme allows for a decoupled solution of the individual parts of this multi-physics system. Moreover, we derive a priori convergence rates that are of first and second order in time, depending on how the individual ingredients of the BDF scheme are chosen and of optimal order in space. In doing so, special care is taken of modeling the DEP force, since its original form is a cubic term. The obtained error estimates are verified by numerical experiments.
Beschreibung:Gesehen am 28.06.2023
Beschreibung:Online Resource
ISSN:2804-7214
DOI:10.1051/m2an/2023031