Exoplanet characterization using conditional invertible neural networks

Context. The characterization of the interior of an exoplanet is an inverse problem. The solution requires statistical methods such as Bayesian inference. Current methods employ Markov chain Monte Carlo (MCMC) sampling to infer the posterior probability of the planetary structure parameters for a gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haldemann, Jonas (VerfasserIn) , Ksoll, Victor F. (VerfasserIn) , Walter, Daniel (VerfasserIn) , Alibert, Yann (VerfasserIn) , Klessen, Ralf S. (VerfasserIn) , Benz, Willy (VerfasserIn) , Köthe, Ullrich (VerfasserIn) , Ardizzone, Lynton (VerfasserIn) , Rother, Carsten (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 April 2023
In: Astronomy and astrophysics
Year: 2023, Jahrgang: 672, Pages: 1-16
ISSN:1432-0746
DOI:10.1051/0004-6361/202243230
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202243230
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2023/04/aa43230-22/aa43230-22.html
Volltext
Verfasserangaben:Jonas Haldemann, Victor Ksoll, Daniel Walter, Yann Alibert, Ralf S. Klessen, Willy Benz, Ullrich Koethe, Lynton Ardizzone, and Carsten Rother

MARC

LEADER 00000caa a2200000 c 4500
001 1851263799
003 DE-627
005 20230706201634.0
007 cr uuu---uuuuu
008 230629s2023 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202243230  |2 doi 
035 |a (DE-627)1851263799 
035 |a (DE-599)KXP1851263799 
035 |a (OCoLC)1389527662 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Haldemann, Jonas  |e VerfasserIn  |0 (DE-588)1270157841  |0 (DE-627)181885483X  |4 aut 
245 1 0 |a Exoplanet characterization using conditional invertible neural networks  |c Jonas Haldemann, Victor Ksoll, Daniel Walter, Yann Alibert, Ralf S. Klessen, Willy Benz, Ullrich Koethe, Lynton Ardizzone, and Carsten Rother 
264 1 |c 20 April 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.06.2023 
520 |a Context. The characterization of the interior of an exoplanet is an inverse problem. The solution requires statistical methods such as Bayesian inference. Current methods employ Markov chain Monte Carlo (MCMC) sampling to infer the posterior probability of the planetary structure parameters for a given exoplanet. These methods are time-consuming because they require the evaluation of a planetary structure model ~105 times. Aims. To speed up the inference process when characterizing an exoplanet, we propose to use conditional invertible neural networks to calculate the posterior probability of the planetary structure parameters.Methods. Conditional invertible neural networks (cINNs) are a special type of neural network that excels at solving inverse problems. We constructed a cINN following the framework for easily invertible architectures (FreIA). This neural network was then trained on a database of 5.6 × 106 internal structure models to recover the inverse mapping between internal structure parameters and observable features (i.e., planetary mass, planetary radius, and elemental composition of the host star). We also show how observational uncertainties can be accounted for. Results. The cINN method was compared to a commonly used Metropolis-Hastings MCMC. To do this, we repeated the characterization of the exoplanet K2-111 b, using both the MCMC method and the trained cINN. We show that the inferred posterior probability distributions of the internal structure parameters from both methods are very similar; the largest differences are seen in the exoplanet water content. Thus, cINNs are a possible alternative to the standard time-consuming sampling methods. cINNs allow infering the composition of an exoplanet that is orders of magnitude faster than what is possible using an MCMC method. The computation of a large database of internal structures to train the neural network is still required, however. Because this database is only computed once, we found that using an invertible neural network is more efficient than an MCMC when more than ten exoplanets are characterized using the same neural network. 
700 1 |a Ksoll, Victor F.  |d 1992-  |e VerfasserIn  |0 (DE-588)1176827448  |0 (DE-627)1048198030  |0 (DE-576)51686372X  |4 aut 
700 1 |a Walter, Daniel  |e VerfasserIn  |0 (DE-588)1270157574  |0 (DE-627)1818854759  |4 aut 
700 1 |a Alibert, Yann  |e VerfasserIn  |4 aut 
700 1 |a Klessen, Ralf S.  |d 1968-  |e VerfasserIn  |0 (DE-588)120533820  |0 (DE-627)392381532  |0 (DE-576)178685399  |4 aut 
700 1 |a Benz, Willy  |e VerfasserIn  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
700 1 |a Ardizzone, Lynton  |d 1994-  |e VerfasserIn  |0 (DE-588)1194988512  |0 (DE-627)1677182296  |4 aut 
700 1 |a Rother, Carsten  |e VerfasserIn  |0 (DE-588)1181464692  |0 (DE-627)1662676883  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 672(2023) vom: Apr., Artikel-ID A180, Seite 1-16  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Exoplanet characterization using conditional invertible neural networks 
773 1 8 |g volume:672  |g year:2023  |g month:04  |g elocationid:A180  |g pages:1-16  |g extent:16  |a Exoplanet characterization using conditional invertible neural networks 
856 4 0 |u https://doi.org/10.1051/0004-6361/202243230  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2023/04/aa43230-22/aa43230-22.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230629 
993 |a Article 
994 |a 2023 
998 |g 1181464692  |a Rother, Carsten  |m 1181464692:Rother, Carsten  |d 700000  |d 708070  |e 700000PR1181464692  |e 708070PR1181464692  |k 0/700000/  |k 1/700000/708070/  |p 9  |y j 
998 |g 1194988512  |a Ardizzone, Lynton  |m 1194988512:Ardizzone, Lynton  |d 110000  |e 110000PA1194988512  |k 0/110000/  |p 8 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 7 
998 |g 120533820  |a Klessen, Ralf S.  |m 120533820:Klessen, Ralf S.  |d 700000  |d 714000  |d 714200  |e 700000PK120533820  |e 714000PK120533820  |e 714200PK120533820  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |p 5 
998 |g 1270157574  |a Walter, Daniel  |m 1270157574:Walter, Daniel  |p 3 
998 |g 1176827448  |a Ksoll, Victor F.  |m 1176827448:Ksoll, Victor F.  |d 700000  |d 714000  |d 714200  |e 700000PK1176827448  |e 714000PK1176827448  |e 714200PK1176827448  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |p 2 
999 |a KXP-PPN1851263799  |e 4344652231 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Haldemann, Jonas","given":"Jonas","family":"Haldemann","role":"aut"},{"given":"Victor F.","display":"Ksoll, Victor F.","family":"Ksoll","role":"aut"},{"family":"Walter","role":"aut","given":"Daniel","display":"Walter, Daniel"},{"display":"Alibert, Yann","given":"Yann","role":"aut","family":"Alibert"},{"given":"Ralf S.","display":"Klessen, Ralf S.","family":"Klessen","role":"aut"},{"family":"Benz","role":"aut","given":"Willy","display":"Benz, Willy"},{"given":"Ullrich","display":"Köthe, Ullrich","role":"aut","family":"Köthe"},{"family":"Ardizzone","role":"aut","given":"Lynton","display":"Ardizzone, Lynton"},{"given":"Carsten","display":"Rother, Carsten","role":"aut","family":"Rother"}],"recId":"1851263799","note":["Gesehen am 29.06.2023"],"language":["eng"],"name":{"displayForm":["Jonas Haldemann, Victor Ksoll, Daniel Walter, Yann Alibert, Ralf S. Klessen, Willy Benz, Ullrich Koethe, Lynton Ardizzone, and Carsten Rother"]},"relHost":[{"language":["eng"],"part":{"extent":"16","pages":"1-16","text":"672(2023) vom: Apr., Artikel-ID A180, Seite 1-16","year":"2023","volume":"672"},"pubHistory":["1.1969 -"],"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"corporate":[{"role":"isb","display":"European Southern Observatory"}],"disp":"Exoplanet characterization using conditional invertible neural networksAstronomy and astrophysics","type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"name":{"displayForm":["European Southern Observatory (ESO)"]},"recId":"253390222","title":[{"title_sort":"Astronomy and astrophysics","title":"Astronomy and astrophysics","subtitle":"an international weekly journal"}],"id":{"eki":["253390222"],"issn":["1432-0746"],"zdb":["1458466-9"]},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1969-","publisher":"EDP Sciences ; Springer","publisherPlace":"Les Ulis ; Berlin ; Heidelberg","dateIssuedKey":"1969"}]}],"origin":[{"dateIssuedDisp":"20 April 2023","dateIssuedKey":"2023"}],"title":[{"title":"Exoplanet characterization using conditional invertible neural networks","title_sort":"Exoplanet characterization using conditional invertible neural networks"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1851263799"],"doi":["10.1051/0004-6361/202243230"]},"physDesc":[{"extent":"16 S."}]} 
SRT |a HALDEMANNJEXOPLANETC2020