Exoplanet characterization using conditional invertible neural networks
Context. The characterization of the interior of an exoplanet is an inverse problem. The solution requires statistical methods such as Bayesian inference. Current methods employ Markov chain Monte Carlo (MCMC) sampling to infer the posterior probability of the planetary structure parameters for a gi...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
20 April 2023
|
| In: |
Astronomy and astrophysics
Year: 2023, Jahrgang: 672, Pages: 1-16 |
| ISSN: | 1432-0746 |
| DOI: | 10.1051/0004-6361/202243230 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202243230 Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2023/04/aa43230-22/aa43230-22.html |
| Verfasserangaben: | Jonas Haldemann, Victor Ksoll, Daniel Walter, Yann Alibert, Ralf S. Klessen, Willy Benz, Ullrich Koethe, Lynton Ardizzone, and Carsten Rother |
Search Result 1
Exoplanet characterization using conditional invertible neural networks
Article (Journal)
Kapitel/Artikel
Online Resource