Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection
We determine here the groups of the title up to isomorphism. As a result we obtain three infinite classes of 2-groups and an exceptional group of order 2 5 .
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
[2010]
|
| In: |
Journal of group theory
Year: 2010, Volume: 13, Issue: 4, Pages: 549-554 |
| ISSN: | 1435-4446 |
| DOI: | 10.1515/jgt.2010.005 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/jgt.2010.005 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/jgt.2010.005/html |
| Author Notes: | Zvonimir Janko ; (communicated by J.S. Wilson) |
| Summary: | We determine here the groups of the title up to isomorphism. As a result we obtain three infinite classes of 2-groups and an exceptional group of order 2 5 . |
|---|---|
| Item Description: | Gesehen am 14.07.2023 |
| Physical Description: | Online Resource |
| ISSN: | 1435-4446 |
| DOI: | 10.1515/jgt.2010.005 |