Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection

We determine here the groups of the title up to isomorphism. As a result we obtain three infinite classes of 2-groups and an exceptional group of order 2 5 .

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Janko, Zvonimir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [2010]
In: Journal of group theory
Year: 2010, Jahrgang: 13, Heft: 4, Pages: 549-554
ISSN:1435-4446
DOI:10.1515/jgt.2010.005
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/jgt.2010.005
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/jgt.2010.005/html
Volltext
Verfasserangaben:Zvonimir Janko ; (communicated by J.S. Wilson)

MARC

LEADER 00000caa a2200000 c 4500
001 1852738596
003 DE-627
005 20250530003453.0
007 cr uuu---uuuuu
008 230714s2010 xx |||||o 00| ||eng c
024 7 |a 10.1515/jgt.2010.005  |2 doi 
035 |a (DE-627)1852738596 
035 |a (DE-599)KXP1852738596 
035 |a (OCoLC)1425874579 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Janko, Zvonimir  |d 1932-  |e VerfasserIn  |0 (DE-588)137026056  |0 (DE-627)622563041  |0 (DE-576)320900258  |4 aut 
245 1 0 |a Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection  |c Zvonimir Janko ; (communicated by J.S. Wilson) 
264 1 |c [2010] 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.07.2023 
520 |a We determine here the groups of the title up to isomorphism. As a result we obtain three infinite classes of 2-groups and an exceptional group of order 2 5 . 
773 0 8 |i Enthalten in  |t Journal of group theory  |d Berlin : de Gruyter, 1998  |g 13(2010), 4, Seite 549-554  |h Online-Ressource  |w (DE-627)302720049  |w (DE-600)1492030-X  |w (DE-576)079877001  |x 1435-4446  |7 nnas  |a Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection 
773 1 8 |g volume:13  |g year:2010  |g number:4  |g pages:549-554  |g extent:6  |a Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection 
856 4 0 |u https://doi.org/10.1515/jgt.2010.005  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/document/doi/10.1515/jgt.2010.005/html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230714 
993 |a Article 
994 |a 2010 
998 |g 137026056  |a Janko, Zvonimir  |m 137026056:Janko, Zvonimir  |d 110000  |e 110000PJ137026056  |k 0/110000/  |p 1  |x j  |y j 
999 |a KXP-PPN1852738596  |e 4353963570 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title_sort":"Journal of group theory","title":"Journal of group theory"}],"recId":"302720049","language":["ger"],"disp":"Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersectionJournal of group theory","note":["Gesehen am 23.02.2022"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"volume":"13","text":"13(2010), 4, Seite 549-554","extent":"6","year":"2010","issue":"4","pages":"549-554"},"pubHistory":["1.1998 -"],"id":{"issn":["1435-4446"],"zdb":["1492030-X"],"doi":["10.1515/jgth"],"eki":["302720049"]},"origin":[{"publisherPlace":"Berlin","dateIssuedKey":"1998","publisher":"de Gruyter","dateIssuedDisp":"1998-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"6 S."}],"name":{"displayForm":["Zvonimir Janko ; (communicated by J.S. Wilson)"]},"id":{"doi":["10.1515/jgt.2010.005"],"eki":["1852738596"]},"origin":[{"dateIssuedDisp":"[2010]","dateIssuedKey":"2010"}],"recId":"1852738596","language":["eng"],"note":["Gesehen am 14.07.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Zvonimir","family":"Janko","role":"aut","display":"Janko, Zvonimir","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection","title":"Finite non-abelian 2-groups such that any two distinct minimal non-abelian subgroups have cyclic intersection"}]} 
SRT |a JANKOZVONIFINITENONA2010