A novel computational approach to pain perception modelling within a Bayesian framework using quantitative sensory testing

Pain perception can be studied as an inferential process in which prior information influences the perception of nociceptive input. To date, there are no suitable psychophysical paradigms to measure this at an individual level. We developed a quantitative sensory testing paradigm allowing for quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drusko, Armin (VerfasserIn) , Baumeister, David (VerfasserIn) , McPhee Christensen, Megan (VerfasserIn) , Kolditz, Sebastian (VerfasserIn) , Fisher, Victoria Lynn (VerfasserIn) , Treede, Rolf-Detlef (VerfasserIn) , Powers, Albert (VerfasserIn) , Graven-Nielsen, Thomas (VerfasserIn) , Tesarz, Jonas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 February 2023
In: Scientific reports
Year: 2023, Jahrgang: 13, Pages: 1-14
ISSN:2045-2322
DOI:10.1038/s41598-023-29758-8
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-023-29758-8
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-023-29758-8
Volltext
Verfasserangaben:Armin Drusko, David Baumeister, Megan McPhee Christensen, Sebastian Kold, Victoria Lynn Fisher, Rolf-Detlef Treede, Albert Powers, Thomas Graven-Nielsen & Jonas Tesarz
Beschreibung
Zusammenfassung:Pain perception can be studied as an inferential process in which prior information influences the perception of nociceptive input. To date, there are no suitable psychophysical paradigms to measure this at an individual level. We developed a quantitative sensory testing paradigm allowing for quantification of the influence of prior expectations versus current nociceptive input during perception. Using a Pavlovian-learning task, we investigated the influence of prior expectations on the belief about the varying strength of association between a painful electrical cutaneous stimulus and a visual cue in healthy subjects (N = 70). ...
Beschreibung:Gesehen am 19.12.2023
Beschreibung:Online Resource
ISSN:2045-2322
DOI:10.1038/s41598-023-29758-8