Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices: empirical study from transfer learning to optimization

Despite the emergence of mobile health and the success of deep learning (DL), deploying production-ready DL models to resource-limited devices remains challenging. Especially, during inference time, the speed of DL models becomes relevant. We aimed to accelerate inference time for Gram-stained analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Hee Eun (VerfasserIn) , Maros, Máté E. (VerfasserIn) , Siegel, Fabian (VerfasserIn) , Ganslandt, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 4 November 2022
In: Biomedicines
Year: 2022, Jahrgang: 10, Heft: 11, Pages: 1-12
ISSN:2227-9059
DOI:10.3390/biomedicines10112808
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/biomedicines10112808
Verlag, kostenfrei, Volltext: https://www.mdpi.com/2227-9059/10/11/2808
Volltext
Verfasserangaben:Hee E. Kim, Mate E. Maros, Fabian Siegel, Thomas Ganslandt

MARC

LEADER 00000caa a2200000 c 4500
001 1852793805
003 DE-627
005 20240306113537.0
007 cr uuu---uuuuu
008 230717s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/biomedicines10112808  |2 doi 
035 |a (DE-627)1852793805 
035 |a (DE-599)KXP1852793805 
035 |a (OCoLC)1425062419 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kim, Hee Eun  |d 1986-  |e VerfasserIn  |0 (DE-588)1296369323  |0 (DE-627)1852791470  |4 aut 
245 1 0 |a Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices  |b empirical study from transfer learning to optimization  |c Hee E. Kim, Mate E. Maros, Fabian Siegel, Thomas Ganslandt 
264 1 |c 4 November 2022 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.07.2023 
520 |a Despite the emergence of mobile health and the success of deep learning (DL), deploying production-ready DL models to resource-limited devices remains challenging. Especially, during inference time, the speed of DL models becomes relevant. We aimed to accelerate inference time for Gram-stained analysis, which is a tedious and manual task involving microorganism detection on whole slide images. Three DL models were optimized in three steps: transfer learning, pruning and quantization and then evaluated on two Android smartphones. Most convolutional layers (≥80%) had to be retrained for adaptation to the Gram-stained classification task. The combination of pruning and quantization demonstrated its utility to reduce the model size and inference time without compromising model quality. Pruning mainly contributed to model size reduction by 15×, while quantization reduced inference time by 3× and decreased model size by 4×. The combination of two reduced the baseline model by an overall factor of 46×. Optimized models were smaller than 6 MB and were able to process one image in <0.6 s on a Galaxy S10. Our findings demonstrate that methods for model compression are highly relevant for the successful deployment of DL solutions to resource-limited devices. 
650 4 |a deep learning 
650 4 |a Gram-stained classification 
650 4 |a mHealth 
650 4 |a model compression 
650 4 |a pruning 
650 4 |a quantization 
650 4 |a rapid inference time 
700 1 |a Maros, Máté E.  |d 1986-  |e VerfasserIn  |0 (DE-588)1144379407  |0 (DE-627)1004715153  |0 (DE-576)495364827  |4 aut 
700 1 |a Siegel, Fabian  |d 1979-  |e VerfasserIn  |0 (DE-588)1034567551  |0 (DE-627)745868037  |0 (DE-576)382210514  |4 aut 
700 1 |a Ganslandt, Thomas  |d 1969-  |e VerfasserIn  |0 (DE-588)124367720  |0 (DE-627)08581623X  |0 (DE-576)294139915  |4 aut 
773 0 8 |i Enthalten in  |t Biomedicines  |d Basel : MDPI, 2013  |g 10(2022), 11, Artikel-ID 2808, Seite 1-12  |h Online-Ressource  |w (DE-627)750370483  |w (DE-600)2720867-9  |w (DE-576)384589596  |x 2227-9059  |7 nnas  |a Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices empirical study from transfer learning to optimization 
773 1 8 |g volume:10  |g year:2022  |g number:11  |g elocationid:2808  |g pages:1-12  |g extent:12  |a Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices empirical study from transfer learning to optimization 
856 4 0 |u https://doi.org/10.3390/biomedicines10112808  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2227-9059/10/11/2808  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230717 
993 |a Article 
994 |a 2022 
998 |g 124367720  |a Ganslandt, Thomas  |m 124367720:Ganslandt, Thomas  |d 60000  |e 60000PG124367720  |k 0/60000/  |p 4  |y j 
998 |g 1034567551  |a Siegel, Fabian  |m 1034567551:Siegel, Fabian  |d 60000  |d 63100  |e 60000PS1034567551  |e 63100PS1034567551  |k 0/60000/  |k 1/60000/63100/  |p 3 
998 |g 1144379407  |a Maros, Máté E.  |m 1144379407:Maros, Máté E.  |d 60000  |d 63000  |e 60000PM1144379407  |e 63000PM1144379407  |k 0/60000/  |k 1/60000/63000/  |p 2 
998 |g 1296369323  |a Kim, Hee Eun  |m 1296369323:Kim, Hee Eun  |d 60000  |d 65300  |e 60000PK1296369323  |e 65300PK1296369323  |k 0/60000/  |k 1/60000/65300/  |p 1  |x j 
999 |a KXP-PPN1852793805  |e 4354229374 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"subtitle":"open access journal","title":"Biomedicines","title_sort":"Biomedicines"}],"note":["Gesehen am 12.08.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2013 -"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"MDPI","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisherPlace":"Basel"}],"id":{"issn":["2227-9059"],"zdb":["2720867-9"],"eki":["750370483"]},"part":{"year":"2022","issue":"11","extent":"12","text":"10(2022), 11, Artikel-ID 2808, Seite 1-12","volume":"10","pages":"1-12"},"recId":"750370483","disp":"Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices empirical study from transfer learning to optimizationBiomedicines"}],"note":["Gesehen am 17.07.2023"],"recId":"1852793805","name":{"displayForm":["Hee E. Kim, Mate E. Maros, Fabian Siegel, Thomas Ganslandt"]},"origin":[{"dateIssuedDisp":"4 November 2022","dateIssuedKey":"2022"}],"id":{"eki":["1852793805"],"doi":["10.3390/biomedicines10112808"]},"physDesc":[{"noteIll":"Illustrationen","extent":"12 S."}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"subtitle":"empirical study from transfer learning to optimization","title":"Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices","title_sort":"Rapid convolutional neural networks for Gram-stained image classification at inference time on mobile devices"}],"person":[{"display":"Kim, Hee Eun","role":"aut","given":"Hee Eun","family":"Kim"},{"display":"Maros, Máté E.","family":"Maros","given":"Máté E.","role":"aut"},{"display":"Siegel, Fabian","given":"Fabian","role":"aut","family":"Siegel"},{"display":"Ganslandt, Thomas","family":"Ganslandt","role":"aut","given":"Thomas"}]} 
SRT |a KIMHEEEUNMRAPIDCONVO4202