Federated learning enables big data for rare cancer boundary detection

Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative...

Full description

Saved in:
Bibliographic Details
Main Authors: Pati, Sarthak (Author) , Vollmuth, Philipp (Author) , Brugnara, Gianluca (Author) , Sahm, Felix (Author) , Maier-Hein, Klaus H. (Author) , Bendszus, Martin (Author) , Wick, Wolfgang (Author)
Format: Article (Journal)
Language:English
Published: 05 December 2022
In: Nature Communications
Year: 2022, Volume: 13, Pages: 1-17
ISSN:2041-1723
DOI:10.1038/s41467-022-33407-5
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-022-33407-5
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-022-33407-5
Get full text
Author Notes:Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J. Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick [und 257 weitere Personen]

MARC

LEADER 00000caa a2200000 c 4500
001 185291808X
003 DE-627
005 20240307090146.0
007 cr uuu---uuuuu
008 230718s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41467-022-33407-5  |2 doi 
035 |a (DE-627)185291808X 
035 |a (DE-599)KXP185291808X 
035 |a (OCoLC)1425217110 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Pati, Sarthak  |e VerfasserIn  |0 (DE-588)1296478122  |0 (DE-627)1852934093  |4 aut 
245 1 0 |a Federated learning enables big data for rare cancer boundary detection  |c Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J. Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick [und 257 weitere Personen] 
264 1 |c 05 December 2022 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.07.2023 
520 |a Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing. 
650 4 |a Biomedical engineering 
650 4 |a CNS cancer 
650 4 |a Computer science 
650 4 |a Medical imaging 
650 4 |a Medical research 
700 1 |a Vollmuth, Philipp  |d 1987-  |e VerfasserIn  |0 (DE-588)1043270086  |0 (DE-627)771319177  |0 (DE-576)394600738  |4 aut 
700 1 |a Brugnara, Gianluca  |e VerfasserIn  |0 (DE-588)1197163123  |0 (DE-627)1678969850  |4 aut 
700 1 |a Sahm, Felix  |d 1984-  |e VerfasserIn  |0 (DE-588)1022852132  |0 (DE-627)717318478  |0 (DE-576)366075020  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Wick, Wolfgang  |d 1970-  |e VerfasserIn  |0 (DE-588)120297736  |0 (DE-627)080586929  |0 (DE-576)186221320  |4 aut 
773 0 8 |i Enthalten in  |t Nature Communications  |d [London] : Springer Nature, 2010  |g 13(2022) vom: Dez., Artikel-ID 7346, Seite 1-17  |h Online-Ressource  |w (DE-627)626457688  |w (DE-600)2553671-0  |w (DE-576)331555905  |x 2041-1723  |7 nnas  |a Federated learning enables big data for rare cancer boundary detection 
773 1 8 |g volume:13  |g year:2022  |g month:12  |g elocationid:7346  |g pages:1-17  |g extent:17  |a Federated learning enables big data for rare cancer boundary detection 
856 4 0 |u https://doi.org/10.1038/s41467-022-33407-5  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41467-022-33407-5  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230718 
993 |a Article 
994 |a 2022 
998 |g 120297736  |a Wick, Wolfgang  |m 120297736:Wick, Wolfgang  |d 910000  |d 911100  |e 910000PW120297736  |e 911100PW120297736  |k 0/910000/  |k 1/910000/911100/  |p 22 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 21 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 910000  |d 911400  |e 910000PM1100551875  |e 911400PM1100551875  |k 0/910000/  |k 1/910000/911400/  |p 19 
998 |g 1022852132  |a Sahm, Felix  |m 1022852132:Sahm, Felix  |d 910000  |d 912000  |d 50000  |e 910000PS1022852132  |e 912000PS1022852132  |e 50000PS1022852132  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 18 
998 |g 1197163123  |a Brugnara, Gianluca  |m 1197163123:Brugnara, Gianluca  |d 910000  |d 911100  |e 910000PB1197163123  |e 911100PB1197163123  |k 0/910000/  |k 1/910000/911100/  |p 16 
998 |g 1043270086  |a Vollmuth, Philipp  |m 1043270086:Vollmuth, Philipp  |d 910000  |d 911100  |d 50000  |e 910000PV1043270086  |e 911100PV1043270086  |e 50000PV1043270086  |k 0/910000/  |k 1/910000/911100/  |k 0/50000/  |p 15 
999 |a KXP-PPN185291808X  |e 4354860716 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony Reina, Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J. Preetha, Felix Sahm, Klaus Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick [und 257 weitere Personen]"]},"title":[{"title":"Federated learning enables big data for rare cancer boundary detection","title_sort":"Federated learning enables big data for rare cancer boundary detection"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"family":"Pati","display":"Pati, Sarthak","role":"aut","given":"Sarthak"},{"given":"Philipp","family":"Vollmuth","display":"Vollmuth, Philipp","role":"aut"},{"role":"aut","display":"Brugnara, Gianluca","family":"Brugnara","given":"Gianluca"},{"role":"aut","display":"Sahm, Felix","family":"Sahm","given":"Felix"},{"given":"Klaus H.","display":"Maier-Hein, Klaus H.","role":"aut","family":"Maier-Hein"},{"display":"Bendszus, Martin","role":"aut","family":"Bendszus","given":"Martin"},{"family":"Wick","role":"aut","display":"Wick, Wolfgang","given":"Wolfgang"}],"id":{"doi":["10.1038/s41467-022-33407-5"],"eki":["185291808X"]},"origin":[{"dateIssuedDisp":"05 December 2022","dateIssuedKey":"2022"}],"language":["eng"],"note":["Gesehen am 18.07.2023"],"relHost":[{"origin":[{"publisher":"Springer Nature ; Nature Publishing Group UK","publisherPlace":"[London] ; [London]","dateIssuedDisp":"[2010]-"}],"id":{"eki":["626457688"],"issn":["2041-1723"],"zdb":["2553671-0"]},"part":{"extent":"17","pages":"1-17","volume":"13","year":"2022","text":"13(2022) vom: Dez., Artikel-ID 7346, Seite 1-17"},"title":[{"title_sort":"Nature Communications","title":"Nature Communications"}],"disp":"Federated learning enables big data for rare cancer boundary detectionNature Communications","pubHistory":["2010-"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"626457688","note":["Gesehen am 13.06.24"]}],"recId":"185291808X","physDesc":[{"extent":"17 S."}]} 
SRT |a PATISARTHAFEDERATEDL0520