Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data

Automatic damage assessment by analysing UAV-derived 3D point clouds provides fast information on the damage situation after an earthquake. However, the assessment of different damage grades is challenging given the variety in damage characteristics and limited transferability of methods to other ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zahs, Vivien (VerfasserIn) , Anders, Katharina (VerfasserIn) , Kohns, Julia (VerfasserIn) , Stark, Alexander (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 2023
In: International journal of applied earth observation and geoinformation
Year: 2023, Jahrgang: 122, Pages: 1-15
ISSN:1872-826X
DOI:10.1016/j.jag.2023.103406
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jag.2023.103406
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1569843223002303
Volltext
Verfasserangaben:Vivien Zahs, Katharina Anders, Julia Kohns, Alexander Stark, Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 1853179108
003 DE-627
005 20240307072759.0
007 cr uuu---uuuuu
008 230720s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jag.2023.103406  |2 doi 
035 |a (DE-627)1853179108 
035 |a (DE-599)KXP1853179108 
035 |a (OCoLC)1425214898 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Zahs, Vivien  |e VerfasserIn  |0 (DE-588)1227935412  |0 (DE-627)1749138905  |4 aut 
245 1 0 |a Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data  |c Vivien Zahs, Katharina Anders, Julia Kohns, Alexander Stark, Bernhard Höfle 
264 1 |c August 2023 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 15. Juli 2023, Artikelversion: 15. Juli 2023 
500 |a Gesehen am 20.07.2023 
520 |a Automatic damage assessment by analysing UAV-derived 3D point clouds provides fast information on the damage situation after an earthquake. However, the assessment of different damage grades is challenging given the variety in damage characteristics and limited transferability of methods to other geographic regions or data sources. We present a novel change-based approach to automatically assess multi-class building damage from real-world point clouds using a machine learning model trained on virtual laser scanning (VLS) data. Therein, we (1) identify object-specific point cloud-based change features, (2) extract changed building parts using k-means clustering, (3) train a random forest machine learning model with VLS data based on object-specific change features, and (4) use the classifier to assess building damage in real-world photogrammetric point clouds. We evaluate the classifier with respect to its capacity to classify three damage grades (heavy, extreme, destruction) in pre-event and post-event point clouds of an earthquake in L’Aquila (Italy). Using object-specific change features derived from bi-temporal point clouds, our approach is transferable with respect to multi-source input point clouds used for model training (VLS) and application (real-world photogrammetry). We further achieve geographic transferability by using simulated training data which characterises damage grades across different geographic regions. The model yields high multi-target classification accuracies (overall accuracy: 92.0%-95.1%). Classification performance improves only slightly when using real-world region-specific training data (< 3% higher overall accuracies). We consider our approach especially relevant for applications where timely information on the damage situation is required and sufficient real-world training data is not available. 
650 4 |a 3D 
650 4 |a Change detection 
650 4 |a Damage classification 
650 4 |a Earthquake 
650 4 |a Natural hazards 
650 4 |a UAV 
700 1 |a Anders, Katharina  |d 1990-  |e VerfasserIn  |0 (DE-588)1128842580  |0 (DE-627)883601109  |0 (DE-576)48610298X  |4 aut 
700 1 |a Kohns, Julia  |e VerfasserIn  |4 aut 
700 1 |a Stark, Alexander  |d 1975-  |e VerfasserIn  |0 (DE-588)138447268  |0 (DE-627)696634201  |0 (DE-576)250377330  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |t International journal of applied earth observation and geoinformation  |d Amsterdam [u.a.] : Elsevier Science, 1999  |g 122(2023) vom: Aug., Artikel-ID 103406, Seite 1-15  |h Online-Ressource  |w (DE-627)359784119  |w (DE-600)2097960-5  |w (DE-576)25927254X  |x 1872-826X  |7 nnas  |a Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data 
773 1 8 |g volume:122  |g year:2023  |g month:08  |g elocationid:103406  |g pages:1-15  |g extent:15  |a Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data 
787 0 8 |i Forschungsdaten  |a Zahs, Vivien  |t Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data [Data and Source Code]  |d Heidelberg : Universität, 2023  |h 1 Online-Ressource (7 Files)  |w (DE-627)1853178365 
856 4 0 |u https://doi.org/10.1016/j.jag.2023.103406  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1569843223002303  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230720 
993 |a Article 
994 |a 2023 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |d 700000  |d 729400  |e 120000PH1019895403  |e 120700PH1019895403  |e 700000PH1019895403  |e 729400PH1019895403  |k 0/120000/  |k 1/120000/120700/  |k 0/700000/  |k 1/700000/729400/  |p 5  |y j 
998 |g 1128842580  |a Anders, Katharina  |m 1128842580:Anders, Katharina  |d 120000  |d 120700  |e 120000PA1128842580  |e 120700PA1128842580  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1227935412  |a Zahs, Vivien  |m 1227935412:Zahs, Vivien  |d 120000  |d 120700  |e 120000PZ1227935412  |e 120700PZ1227935412  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1853179108  |e 4355516415 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online verfügbar: 15. Juli 2023, Artikelversion: 15. Juli 2023","Gesehen am 20.07.2023"],"recId":"1853179108","name":{"displayForm":["Vivien Zahs, Katharina Anders, Julia Kohns, Alexander Stark, Bernhard Höfle"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1016/j.jag.2023.103406"],"eki":["1853179108"]},"language":["eng"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"August 2023"}],"relHost":[{"disp":"Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning dataInternational journal of applied earth observation and geoinformation","recId":"359784119","pubHistory":["1.1999 - 13.2011; Vol. 14.2012 -"],"note":["Gesehen am 20.02.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"issn":["1872-826X"],"zdb":["2097960-5"],"eki":["359784119"]},"language":["eng"],"origin":[{"dateIssuedKey":"1999","publisher":"Elsevier Science","dateIssuedDisp":"1999-","publisherPlace":"Amsterdam [u.a.]"}],"title":[{"title":"International journal of applied earth observation and geoinformation","title_sort":"International journal of applied earth observation and geoinformation"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"pages":"1-15","text":"122(2023) vom: Aug., Artikel-ID 103406, Seite 1-15","volume":"122","year":"2023","extent":"15"}}],"person":[{"role":"aut","given":"Vivien","family":"Zahs","display":"Zahs, Vivien"},{"given":"Katharina","display":"Anders, Katharina","family":"Anders","role":"aut"},{"role":"aut","display":"Kohns, Julia","family":"Kohns","given":"Julia"},{"family":"Stark","display":"Stark, Alexander","given":"Alexander","role":"aut"},{"role":"aut","family":"Höfle","display":"Höfle, Bernhard","given":"Bernhard"}],"physDesc":[{"noteIll":"Illustrationen","extent":"15 S."}],"title":[{"title_sort":"Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data","title":"Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data"}]} 
SRT |a ZAHSVIVIENCLASSIFICA2023